Study challenges long-held assumption of gene expression in embryonic stem cells

July 03, 2013

CAMBRIDGE, Mass. (July 3, 2013) - Whitehead Institute researchers have determined that the transcription factor Nanog, which plays a critical role in the self-renewal of embryonic stem cells, is expressed in a manner similar to other pluripotency markers. This finding contradicts the field's presumptions about this important gene and its role in the differentiation of embryonic stem cells.

A large body of research has reported that Nanog is allelically regulated--that is, only one copy of the gene is expressed at any given time--and fluctuations in its expression are responsible for the differences seen in individual embryonic stem (ES) cells' predilection to differentiate into more specialized cells. These studies relied on cells that had a genetic marker or reporter inserted in the DNA upstream of the Nanog gene. This latest research, published in this week's edition of the journal Cell Stem Cell, suggests that results from studies based on this approach could be called into question.

To quantify the variations in Nanog expression, Dina Faddah, a graduate student in the lab of Whitehead Institute Founding Member Rudolf Jaenisch, looked at hundreds of individual mouse ES cells with reporters inserted immediately downstream of the Nanog gene. One Nanog allele had a green reporter, while the other had a red reporter, allowing Faddah to determine which of the two alleles was being expressed.

After analyzing the results and comparing them to the expression of a "housekeeping" gene and other pluripotency factors, Faddah concluded that, regardless of the cells' growing environment, most ES cells express both Nanog alleles and the variability of this expression corresponds to that of the other genes.

When Faddah tested the established method of inserting a reporter upstream of Nanog, her results reflected the earlier studies' conclusions. However, when she checked the results with other forms of gene expression analysis, she found that the method was not a faithful indicator of Nanog's expression.

"The way the reporter was inserted into the DNA seems to disrupt the regulation of the alleles, so that when the reporter says Nanog isn't being expressed, it actually is," says Faddah.

For Jaenisch, this is an instructional tale that should be heeded by all geneticists.

"Clearly, the conclusions for this particular gene need to be reconsidered," says Jaenisch, who is also a professor of biology at MIT. "And it raises the question for other genes. For some genes, there might be similar issues. For other genes, they might be more resistant to this type of disturbances caused by a reporter."
-end-
This work is supported Vertex Scholars Program, the National Science Foundation (NSF), Jerome and Florence Brill Fellowship, Croucher and Ludwig Research Fellowship, the National Institutes of Health (NIH) (1 F32 GM099153-01A1, HD 045022 and R37CA084198).

Written by Nicole Giese Rura

Rudolf Jaenisch's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Single-cell analysis reveals that expression of Nanog is biallelic and equally variable as that of other pluripotency factors in mouse embryonic stem cells"

Cell Stem Cell, July 3, 2013.

Dina A. Faddah (1,2), Haoyi Wang (1), Albert Wu Cheng (1,3), Yarden Katz (1,4), Yosef Buganim (1), Rudolf Jaenisch (1,2).

1. Whitehead Institute for Biomedical Research, Cambridge, MA 02142

2. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139

3. Department of Computation and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139

4. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139

Whitehead Institute for Biomedical Research

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.