Nav: Home

Sea spray losing its sparkle?

July 03, 2017

Atmospheric aerosols are tiny particles that scatter and absorb sunlight but also influence climate indirectly through their role in cloud formation. One of the largest sources of aerosols is sea spray which is produced over the world's oceans. Understanding how these particles take up water from the atmosphere, their so-called hygroscopicity, is important because it determines how much sunlight they reflect and how well they can form clouds. This was the topic of a new study by researchers from Stockholm University and international partners published in Nature Communications.

"It is widely understood that aerosols have a net cooling effect on climate, counteracting the warming caused by greenhouse gases. However, the magnitude of this cooling is highly uncertain, in part due to knowledge gaps in how natural aerosol particles interact with solar radiation and clouds," says Matt Salter, researcher at the Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, and co-author of the study.

Sea spray is a complex mixture of inorganic salts, organic material present in the ocean and living organisms such as bacteria, viruses and fungi. The ability of the inorganic component of sea spray particles to take up water has been the focus of this international study where a large suite of well-controlled laboratory experiments have shown, for the first time, that the hygroscopicity of the inorganic component of sea spray is significantly lower than pure sodium chloride, a substance routinely used to describe their hygroscopicity in climate models.

"All numerical models are simplified reflections of reality which require approximations. It was previously thought that sodium chloride was a good approximation for the hygroscopicity of the inorganic fraction of sea spray. We have now shown that the hygroscopicity of pure inorganic sea spray particles is significantly lower than sodium chloride. This finding has implications for the role of sea spray aerosols in climate, especially on how they interact with solar radiation, " says Paul Zieger, assistant professor at ACES and co-author of the study.

Using models, the authors were able to show that the reduced hygroscopicity of sea spray means that these particles will grow less and reflect less sunlight than previously thought. However, the picture may be more complicated.

"We suspect that water bound within sea salt, known as hydrates, play a significant role in defining the hygroscopicity of inorganic sea spray aerosol, If true, it means that the particles would take up less water because of the water already present as hydrates and, as a result, they would grow less. Overall, improving our understanding of one of the largest natural aerosol sources is critical if we are to understand the effects of man-made aerosols on climate, " says Matt Salter.
-end-
Original article: "Revising the hygroscopicity of inorganic sea salt particles"

For more information please contact:
Matt Salter
Department of Environmental Science and Analytical Chemistry (ACES)
Email: Matthew.Salter@aces.su.se
Tel: +46 8 674 7222

Paul Zieger
Department of Environmental Science and Analytical Chemistry (ACES)
Email: Paul.Zieger@aces.su.se
Tel: +46 8 674 7634

Stockholm University

Related Aerosols Articles:

NASA's Terra highlights aerosols from western fires in danger zone
The year 2020 will be remembered for being a very trying year and western wildfires have just added to the year's woes.
NOAA-NASA Suomi NPP captures fires and aerosols across America
On Sep. 07, 2020, NOAA/NASA's Suomi NPP satellite provided two different views of how fires are affecting the US.
Low humidity increases COVID risk; another reason to wear a mask
University of Sydney study confirms a link between COVID-19 cases and lower humidity.
Summer observation campaigns to study pollution in the Asian tropopause layer
Scientists find the aerosols in the boundary layer are mostly pollution out of human activities, and the aerosols in the upper troposphere may also contain natural aerosols, like mineral dust and volcanic sulfate aerosols,
Masks reduce airborne transmission of SARS-CoV-2
Growing evidence suggests that SARS-CoV-2, the novel coronavirus that causes COVID-19, can be spread by asymptomatic people via aerosols -- a reality that deeply underscores the ongoing importance of regular widespread testing, wearing masks and physical distancing to reduce the spread of the virus, say Kimberly Prather and colleagues in a new Perspective.
Fire aerosols decrease global terrestrial ecosystem productivity through changing climate
Cooling, drying, and light attenuation are major impacts of fire aerosols on the global terrestrial ecosystem productivity.
Study: Aerosols have an outsized impact on extreme weather
A reduction in manmade aerosols in Europe has been tied to a reduction in extreme winter weather in the region.
Agricultural area residents in danger of inhaling toxic aerosols
Excess selenium from fertilizers and other natural sources can create air pollution that could lead to lung cancer, asthma, and Type 2 diabetes, according to new UC Riverside research.
Satellite tracking shows how ships affect clouds and climate
By matching the movement of ships to the changes in clouds caused by their emissions, researchers have shown how strongly the two are connected.
How aerosols affect our climate
Greenhouse gases may get more attention, but aerosols -- from car exhaust to volcanic eruptions -- also have a major impact on the Earth's climate.
More Aerosols News and Aerosols Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.