Nav: Home

New research describes the differences between mice and humans

July 03, 2017

Research from King's College in London, UK, and Lund University in Sweden could explain why diabetes drugs which have worked in animal experiments are not equally successful in humans. The researchers discovered differences - but also unknown similarities - in the function of insulin-producing beta cells.

The team have mapped a category of receptors, known as G protein-coupled receptors, which control the function of beta-cells. They then compared the presence of these receptors in human cells with their presence in two types of laboratory mice, which have been used for more than 100 years to study human diseases.

"Our results show that there is a big difference between mice and humans, but also that there are differences between the two types of mice", say Dr Stefan Amisten at King's College and Associate Professor Albert Salehi at Lund University.

One of the differences is that humans lack a large part of the G protein-coupled receptors on the insulin-producing beta-cells that mice have and for which many drugs are developed. Of note, some of the receptors were only found in mice and others only in humans.

"This means that a drug developed to stimulate or inhibit a particular receptor which, in mice, can lead to increased insulin production, might have no effect on humans, or even could cause unbeneficial and diabetes-like symptoms", says Stefan Amisten.

Another finding is that the GLP-1 receptor is produced to a greater extent in mouse compared to human beta-cells. The GLP-1 receptor is activated by the GLP-1 hormone, which is released by the intestinal cells when we eat, and which in humans might slightly potentiate insulin secretion while it also markedly delays gastric emptying.

"So the question is whether what we're seeing is merely a beta-cell effect, or also a stomach effect that, in turn, results in a lower food intake and consequently a lower blood sugar", says Albert Salehi.

As the supply of insulin-producing beta-cells from humans is limited to donated cells from deceased organ donors, cells from mice are used in the development of new drugs. The same good results are rarely achieved when testing a new drug on human cells.

"This is well known, and a source of great frustration for researchers and the pharmaceutical industry. Is it then right to continue to develop drugs based on research conducted on mice, when these drugs cannot be used on humans?", asks Albert Salehi.

The study was published in the journal, Scientific Reports.

Albert Salehi has also led another study which, on the contrary, has shown that there are new, previously unknown receptors which can be found in both mice and humans. The study published in The Journal of Clinical Endocrinology and Metabolism shows that, for example, GPR56 is a common receptor in both human cells as well as in the insulin-producing cells of the two types of mice, and is linked to improved cell function when activated.

"This opens up the door to new drugs with better potential to work on humans as well", says Albert Salehi.

Links to both publications:

A Comparative Analysis of Human and Mouse Islet G-Protein Coupled Receptor Expression

Adhesion G Protein-Coupled Receptor G1 (ADGRG1/GPR56) and Pancreatic β-Cell Function

Lund University

Related Drugs Articles:

Wallflowers could lead to new drugs
Plant-derived chemicals called cardenolides - like digitoxin - have long been used to treat heart disease, and have shown potential as cancer therapies.
Bristol pioneers use of VR for designing new drugs
Researchers at the University of Bristol are pioneering the use of virtual reality (VR) as a tool to design the next generation of drug treatments.
Towards better anti-cancer drugs
The Bayreuth biochemist Dr. Claus-D. Kuhn and his research team have deciphered how the important human oncogene CDK8 is activated in cells of healthy individuals.
Separating drugs with MagLev
The composition of suspicious powders that may contain illicit drugs can be analyzed using a quick and simple method called magneto-Archimedes levitation (MagLev), according to a new study published in the journal Angewandte Chemie.
People are more likely to try drugs for the first time during the summer
American teenagers and adults are more likely to try illegal or recreational drugs for the first time in the summer, a new study shows.
Drugs used to enhance sexual experiences, especially in UK
Combining drugs with sex is common regardless of gender or sexual orientation, reveals new research by UCL and the Global Drug Survey into global trends of substance-linked sex.
Promising new drugs for old pathogen Mtb
UConn researchers are targeting a metabolic pathway, the dihydrofolate reductase pathway, crucial for amino acid synthesis to treat TB infections.
Can psychedelic drugs heal?
Many people think of psychedelics as relics from the hippie generation or something taken by ravers and music festival-goers, but they may one day be used to treat disorders ranging from social anxiety to depression, according to research presented at the annual convention of the American Psychological Association.
New uses for existing antiviral drugs
Broad-spectrum antiviral drugs work against a range of viral diseases, but developing them can be costly and time consuming.
New TB drugs possible with understanding of old antibiotic
Tuberculosis, and other life-threatening microbial diseases, could be more effectively tackled with future drugs, thanks to new research into an old antibiotic by the University of Warwick and the Francis Crick Institute.
More Drugs News and Drugs Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.