Nav: Home

Key genes in nitrogen utilization in tobacco identified

July 03, 2017

A new genetic road map of tobacco has been used to successfully identify and clone two mutated genes associated with how efficiently the plants used nitrogen - a discovery that could one day help reduce the need for nitrogen-based fertilizers in growing crops. These same genes could also play a role in helping to reduce the levels of some carcinogenic compounds in cigarette smoke.

The overuse of nitrogen-based fertilisers on crops can lead to an excess of nitrate in the environment, which can in turn lead to water acidification and eutrophication, in addition to nutrients leaching from the soil. This can cause reductions in biodiversity and crop productivity, as well as having negative impacts on both animal and human health.

In the case of tobacco, inefficient metabolism of nitrogen by the plant can lead to high concentrations of some nitrogen-based compounds in the leaf, the presence of which lead to the formation of certain tobacco-specific toxicants in smoke.

Scientists at British American Tobacco, North Carolina State University (Raleigh, North Carolina, USA) and the Boyce Thompson Institute (Cornell University, Ithaca, New York, USA) worked together to develop a new genetic roadmap of the tobacco genome (Nicotiana tabacum). This road map lays out the position of (or "anchors") 64% of the tobacco genome, compared to just 20% in previous attempts.

The tobacco genome is about 50% larger than a human genome (at about 4Gb). It is also significantly more complicated than the human genome because it is allopolyploid, that is, it arises from the hybridization of different ancestral species (in this case N. sylvestris and N. tomentosiformis) -- each tobacco cell contains sets of chromosomes originating from both of these species.

This makes assembly of the genome sequence technically very difficult because the combined genomes are very similar in sequence -- in effect a bit like trying to put together two jumbled jigsaw puzzles containing very similar, but non-identical, pictures. The sequence also containsa lot of repetition, making assembling some areas like trying to complete a jigsaw puzzle of blue sky.

'Generating this dramatically improved assembly for tobacco is a substantial step forward,' says Chris Proctor, Chief Scientific Officer at British American Tobacco. 'It will open up several avenues of research that will help scientists gain a greater understanding of the evolution of the tobacco plant to the identification of genes responsible for several traits, whether they be related to improving sustainability of agriculture, reducing the levels of toxicants in tobacco products, or improving the production of pharmaceuticals and biofuels.'

The new assembly has already been used to successfully identify two mutated genes that explain why Burley tobacco is not very effective at utilizing nitrogen compared with other types of tobacco. 'Different cultivars of Burley tobacco all share these two gene mutations, giving us a handle on why they differ from other tobaccos,' explains Allen Griffiths, Head of Plant Biotechnology, British American Tobacco. 'We believe this represents the first successful map-based gene discovery for N. tabacum, and demonstrates the value of a high-quality genome assembly for future research.'

Nitrogen is essential for plant growth, and many farmers add nitrogen-based fertilizers to crops to achieve good yields. However, excess nitrogen can have adverse effects on the environment. The discovery of these genes could, therefore, help improve the nitrogen use efficiency of some types of tobacco, as well as other commercially important crops -- ultimately reducing the need for chemical fertilizers

The impact of Burley's lower nitrogen use efficiency on its metabolism and growth means that some plant variants contain increased levels of nicotine, other alkaloids, and nitrites, resulting in higher levels of tobacco-specific nitrosamine (TSNA) compounds in their leaf. Modifying the mutant genes could potentially also lead to the development of novel tobacco cultivars that contain lower levels of TSNAs.

To anchor the genetic code, the researchers used a new technique known as optical mapping. This involves taking a fingerprint of the genome -- marking specific sequence patterns in very long sequences of unknown DNA -- to create a barcode of DNA fragments. The barcode is then used as a template onto which the new assembly can be dropped and matched, a bit like completing a jigsaw on top of a trace of its picture. This has enabled much more of the genome to be anchored to tobacco chromosomes compared to previous assemblies.

The tobacco genome assembly is freely available at the Sol Genomics Network. The research article is available freely from the BMC Genomics web site.
-end-


R&D at British American Tobacco

Related Genome Articles:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.
Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.
A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.
Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
More Genome News and Genome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.