Nav: Home

New technique 'sees' radioactive material even after it's gone

July 03, 2017

A new technique allows researchers to characterize nuclear material that was in a location even after the nuclear material has been removed - a finding that has significant implications for nuclear nonproliferation and security applications.

"Basically, we can see nuclear material that is no longer there," says Robert Hayes, lead author of paper describing the work and an associate professor of nuclear engineering at North Carolina State University. "For example, we could identify and characterize a dirty bomb based on samples taken from a room the bomb was in a year ago.

"This is a valuable tool for emergency responders, nuclear nonproliferation authorities and forensics, because it allows us to get a rough snapshot of the size of a radiation source, where it was located, how radioactive it is, and what type of radioactive material it is," Hayes says.

The technique takes advantage of the fact that radioactive material changes the arrangement of valence electrons - or outer electrons - in insulator materials, such as brick, porcelain, glass - even hard candy. Basically, radiation displaces electrons at defect sites in the crystalline structure of these materials.

By taking samples of multiple materials in a room, applying conventional radiation dosimetry techniques, and evaluating how the electrons at those defect sites are organized, researchers can determine the presence and strength of any nuclear materials that were in that room.

"If the samples were taken at regular intervals in a grid pattern, the relative radiation dose profile can be used to triangulate where in the room the source was located, in three dimensions," Hayes says. "It can also provide a very rough idea of the physical size of the source, but that depends on various factors, such as how close the source was to the materials being sampled."

By taking a core sample of the insulating material, and measuring the radiation dose at various depths in the material, researches can also ascertain what type of radiation source was present. This is possible because different radioactive materials have characteristic distributions of gamma rays, X-rays, etc., and each type of energy penetrates materials with different strength.

"This is not extremely precise, but it does allow us to answer important questions. For example, distinguishing between different kinds of nuclear material such as naturally occurring, medical, industrial, and 'special' nuclear materials - the latter being used for nuclear weapons," Hayes says.

"This is a proof of concept," Hayes says. "We're now focused on exploring its detection limitations along with spatial and energy resolution, and how to make use of this approach moving forward.

"But this is a big deal for nuclear nonproliferation efforts, because it means you can't handle nuclear material in secret anymore," Hayes adds. "It means the world is now densely blanketed by low-resolution integrating gamma-ray spectrometers, so we can always go back and measure what was present. There's no hiding."
-end-
The paper, "Retrospective imaging and characterization of nuclear material," is published in the journal Health Physics. The paper was co-authored by Sergey Sholom of Oklahoma State University. The work was done with support from the Nuclear Regulatory Commission, under grant number NRC-HQ-84-14-G-0059, and Oak Ridge National Laboratory in coordination with the Office of Defense Nuclear Nonproliferation R&D of the National Nuclear Security Administration sponsored Consortium for Nonproliferation Enabling Capabilities.

North Carolina State University

Related Electrons Articles:

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.
Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells
Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.
Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.