Nav: Home

Solar cell design using diverse plant pigments

July 03, 2017

A member of the Faculty of Biology of the Lomonosov Moscow State University in cooperation with his colleagues has optimized and characterized TiO₂-based solar cell design using diverse plant pigments. Two types of solar cells with two photosensitizers: thylakoid membrane preparations and anthocyanin-enriched raspberry extracts have been studied. The project results have been published by the scientists in the International Journal of Hydrogen Energy.

Suleyman Allakhverdiev, Doctor of Biological Sciences, Professor from the Department of Plant Physiology at the Faculty of Biology of the Lomonosov Moscow State University and one of the article authors explain: "To understand processes occurring in the solar cells, investigations characterizing the efficiency and stability with regard to environmental factors are also required. For this aim, novel instrumentation for the investigation of environmental effects on photocurrent generated by solar cells has been designed and constructed. The system can be a model, which reflects conditions required for effective and stable functioning of the solar cells. We've designed and studied solar cells where components of the photosynthetic apparatus are used as photosensitizers. With the help of the revealed stabilizing compounds we have managed to increase the active stable operation time of a system by four-six times.To such systems we've also proved the possibility to apply long-wave forms of chlorophyll, capable of absorbing low-energy photons, which aren't absorbed by usual chlorophyll molecules."

In order to create a solar cell, the scientists have used methods of immobilization of various biological pigment-protein complexes on the surface of nanostructured titanium dioxide.

The scientist concludes: "In the future we are going to study the possibility to use complexes of isolated reaction centers of photosynthesis as sensitizers in such systems, as well as, chlorophyll molecules which are able to absorb light in far red and near infrared spectral ranges. Biological systems, used as photosensitizers, are inexpensive and environmentally safe. Moreover, the same principle could be applied to creation of photocatalytic water cleavage systems with the outcome of molecular hydrogen, which could be a promising alternative to fossil fuel. Creation of artificial photobiosynthesis systems could become one of the possible means, covering ever-increasing needs of economy for cheap, environmentally safe and energy rich fuel types."
-end-
The project has been done in cooperation with the scientists from the K.A. Timiryazev Institute of Plant Physiology (RAS), Institute of Basic Biological Problems (RAS), University of Tennessee (USA) and Institute of Molecular Biology and Biotechnologies of the Azerbaijan National Academy of Sciences.

Lomonosov Moscow State University

Related Solar Cells Articles:

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.
Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.
On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.
Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.
For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.
Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.
Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.
Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.
Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
More Solar Cells News and Solar Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.