Nav: Home

Flipping the switch on height variation

July 03, 2017

If you're taller than average and worried about what that means for your risk of arthritis later in life, Terence Capellini and David Kingsley may have some good news for you.

An Associate Professor of Human Evolutionary Biology, Capellini is the co-author of a study that discovered a genetic "switch" that changes the activity of a key skeletal gene related to height, and pinpointed a genetic variant in the switch that favors shortness and is far more prevalent among Eurasian populations than expected.

However, the study also uncovered a surprising link -- between the sequence that favors shortness and an increased risk of osteoarthritis. The study is described in a July 3 paper in Nature Genetics.

"There are a couple aspects of this study that are interesting," Capellini said. "One is that these genetic variants are occurring in non-coding sequences, so while genes are important, this shows that the genetic machinery around a gene can have a dramatic impact on how it works. But another interesting finding is that while evolution has increased the frequency of a variant that leads to decreased height, because of linked mutations, there is also an increased risk of osteoarthritis."

From the outset, Capellini and colleagues' goal wasn't to understand that link, but simply to better understand the genetics behind height variation.

To do so, the multidisciplinary team from Harvard, Stanford, and the University of Waterloo, combined the powerful approaches of developmental biology, evolutionary genomics and bioinformatics. They chose to focus on a single gene, known as GDF5, which has repeatedly been linked to height variation in genome-wide association studies.

"This type of study has been done on upwards of 250,000 people," Capellini said. "When you look at the results of these studies, this gene comes up again and again, and when you zoom-in on the GDF5 region there are a lot of genetic variants that are also associated with height variation."

Essentially, Capellini said, those variations -- found in the non-coding regions around the gene -- can alter the activity of the gene in various areas in the body if they occur in specific genetic "switches".

"If you want to influence height, one place you want to turn on the gene is in the growth plates of bones," Capellini said. "But the reality is that, for all the height studies that have been done, no one really knows the switches, let alone which one in the GDF5 region contains the actual DNA variant that causes the change in height."

To find it, Capellini, Kingsley and colleagues attached a reporter gene which produces blue color to each potential switch, then tracked where the color was expressed in mouse embryos. What they found, he said, was a sequence that controls the activity of the gene in the growth plates, and more importantly a single DNA base change in the switch that influences its activity and height variation.

When Capellini and colleagues deleted the GDF5 growth plate switch from mice, their bones became shorter and this was in line with what they saw when testing the human short height variant. Interestingly, they also saw that their femoral neck -- the connection between the femur and the femoral head -- grew shorter as well.

Surprisingly, Capellini also said, other tests showed that the variant in favor of shorter height is much more prevalent among both European and Asian populations -- but is rarely seen among African populations. He and his colleagues then go on to suggest that this may be due to several factors:

"We argue that shorter height may have been advantageous in the past...because if you were living in a colder climate, having a short, stocky body may actually help you survive," he said. "When you look at animals that reside in the arctic, they tend to have shorter appendages to reduce the risk of frostbite and to maintain body heat."

However, given the effect of the switch on femoral neck length, Capellini and Kingsley also suggest that "if you're tall and you have a long femoral neck, you're at higher risk for hip fracture...So the thinking is that a shorter femoral neck might also have been a protective mechanism that's brought this sequence to very high frequency in some populations."

"It's a very interesting situation, because favorable selection during human history means the variant we are studying is now present in literally billions of people" said Kingsley, a professor of Developmental Biology at Stanford University, and co-leader of the study.

Remarkably, the growth switch, however, wasn't the only one Capellini, Kingsley, and colleagues found.

"The variant that decreases height is lowering the activity of GDF5 in the growth plates, but there are lots of other mutations that are physically linked to it," Capellini said. "A few others occur in different switches we found, each which turn GDF5 on in the joints, and these mutations are associated with hip and knee osteoarthritis risk, and likely lower GDF5 activity in the joints."

"Interestingly, having the short height variant in this region is thus linked to having an increased risk of knee and hip osteoarthritis, because of separate mutations".

While the study offers new insight into the roles of non-coding DNA and the complex relationship between height and arthritis, Capellini warned that GDF5 is only one gene of many that play a role in height, and more work needs to be done to get a fuller picture.

"We know the genetics of height and arthritis are complex, with potentially thousands of genes involved," he said. "This makes us appreciate that biology is highly complex and we need to tease out more of these relationships to really get a sense of how one feature may be associated with another."
This research was supported with funding from Natural Sciences and Engineering Research Councilof Canada, the Arthritis Foundation, National Institute of Health, the Milton Fund of Harvard, the China Scholarship Council, and the Jason S. Bailey Fund of Harvard.

Harvard University

Related Osteoarthritis Articles:

Major savings possible with app-based osteoarthritis treatment
Osteoarthritis treatment conducted digitally via an app costs around 25% of what conventional care costs, according to a study from Lund University in Sweden published in the research journal PLOS ONE.
New approach to treating osteoarthritis advances
Injections of a natural 'energy' molecule prompted regrowth of almost half of the cartilage lost with aging in knees, a new study in rodents shows.
Bone drug may be beneficial for knee osteoarthritis
Bisphosphonates (a class of drugs that prevent the loss of bone density and used to treat osteoporosis and similar diseases) appear to be safe and beneficial for osteoarthritis patients.
Certain jobs linked to higher risk of knee osteoarthritis
Workers in jobs that typically involve heavy lifting, frequent climbing, prolonged kneeling, squatting, and standing face an increased risk of developing knee osteoarthritis.
App helps reduce osteoarthritis pain
By performing a few simple physical exercises daily, and receiving information about their disease regularly, 500 osteoarthritis patients were able to on average halve their pain in 6 months -- and improve their physical function.
Osteoarthritis can increase your risk for social isolation
In a study published in the Journal of the American Geriatrics Society, researchers examined information from the European Project on OSteoArthritis (EPOSA) study.
High rates of opioid prescriptions for osteoarthritis
Opioids work against severe pain but the risks of side effects and addiction are high.
Disease burden in osteoarthritis is similar to rheumatoid arthritis
Osteoarthritis (OA) has traditionally been viewed as a highly prevalent but milder condition when compared with rheumatoid arthritis (RA), and some may believe that it is part of a normal aging process requiring acceptance, not treatment.
3D printing may help treat osteoarthritis
In a Journal of Orthopaedic Research study, scientists used 3D printing to repair bone in the joints of mini-pigs, an advance that may help to treat osteoarthritis in humans.
Finger joint enlargements may be linked to knee osteoarthritis
Heberden's nodes (HNs) are bony enlargements of the finger joints that are readily detectable in a routine physical exam and are considered hallmarks of osteoarthritis.
More Osteoarthritis News and Osteoarthritis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.