Nav: Home

'Little Cub' gives astronomers rare chance to see galaxy demise

July 03, 2017

A primitive galaxy that could provide clues about the early Universe has been spotted by astronomers as it begins to be consumed by a gigantic neighbouring galaxy.

The Little Cub galaxy - so called because it sits in the Ursa Major or Great Bear constellation - is being stripped of the gas needed to continue forming stars by its larger companion.

The find means scientists now have a rare opportunity to observe a dwarf galaxy as its gas is removed by the effects of a nearby giant galaxy to learn more about how this process happens.

As the Little Cub has remained almost pristine since its formation, scientists also hope its elements will reveal more about the chemical signature of the Universe just minutes after the Big Bang.

The research, carried out by the University of California Santa Cruz, USA, and Durham University, UK, is being presented today (Tuesday, 4 July) at the Royal Astronomical Society's National Astronomy Meeting.

The Little Cub and its larger neighbour, a grand design spiral galaxy called NGC 3359, are about 200 to 300 thousand light years apart, and approximately 50 million light years from Earth.

Gas from the Little Cub is being stripped away by its interaction with NGC 3359, which has up to 10,000 times as many stars as the Little Cub and is similar to our Milky Way.

By observing this cosmic feast, scientists hope to understand more about how and when gas is lost from smaller galaxies.

"We may be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way-like galaxy," said lead author Tiffany Hsyu, a graduate student in the Department of Astronomy & Astrophysics at UC Santa Cruz.

"It is rare for such a tiny galaxy to still contain gas and be forming stars when it is in close proximity to a much larger galaxy so this is a great opportunity to see just how this process works.

"Essentially the larger galaxy is removing the fuel that the Little Cub needs to form stars, which will eventually shut down star formation and lead to the smaller galaxy's demise."

The researchers also hope to gain an insight into the make-up of the very early Universe, by studying the hydrogen and helium atoms that are being illuminated by the small number of very bright stars within the Little Cub - which also has the less romantic name SDSS J1044+6306.

Since this galaxy is so primitive, it may still preserve the hydrogen and helium atoms that were created minutes after the Big Bang.

Research co-author Dr Ryan Cooke, Royal Society University Research Fellow, in Durham University's Centre for Extragalactic Astronomy, said: "We know by studying the chemistry of the Little Cub that it is one of the most primitive objects currently known in our cosmic neighbourhood.

"Such galaxies, which have remained dormant for most of their lives, are believed to contain the chemical elements forged a few minutes after the Big Bang.

"By measuring the relative number of hydrogen and helium atoms in the Little Cub we might be able to learn more about what made up the Universe in the moments after it began 13.7 billion years ago."

The researchers hope further observations will find more pristine galaxies where the chemical signature of the early Universe might be found.

The Little Cub was initially identified as a potentially pristine dwarf galaxy in data from the Sloan Digital Sky Survey (SDSS). Follow-up observations were conducted using the 3-metre Shane Telescope at Lick Observatory and the 10-metre telescope at the WM Keck Observatory.

"The Little Cub's discovery is a terrific example of using the smaller 3-metre-class Lick Observatory to scan through hundreds of candidates before focussing on the best sources with UC's 10-metre Keck telescope," said co-author J. Xavier Prochaska, Professor of Astronomy and Astrophysics at UC Santa Cruz.

A paper describing the discovery of Little Cub has been submitted for publication in the Astrophysical Journal Letters.
-end-
The research was funded by the WM Keck Foundation, Google, The Royal Society, NASA, the Science and Technology Facilities Council and the National Science Foundation (USA).

The Royal Astronomical Society's National Astronomy Meeting is taking place at the University of Hull, UK, until Thursday, 6 July, 2017.

Durham University

Related Hydrogen Articles:

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.
Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.
Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.
Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.
Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.
Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.
Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.
World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
More Hydrogen News and Hydrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.