Increased brain injury markers in response to asymptomatic high-accelerated head impacts

July 03, 2018

Charlottesville, VA (July 3, 2018). Researchers from the University of Michigan found that serum levels of two biomarkers of traumatic brain injury, tau and ubiquitin C-terminal hydrolase L1, are elevated following high-acceleration head impacts, even when there is no clinical diagnosis of concussion. Their complete findings are reported today in the Journal of Neurosurgery, in the article "Elevated markers of brain injury as a result of clinically asymptomatic high-acceleration head impacts in high-school football athletes" by Jacob R. Joseph, M.D., and colleagues.

In American football, athletes are regularly subjected to head impacts of varying intensities--hits that may or may not produce the clinical signs and symptoms of a concussion. Sometimes it is difficult to tell whether all of these hits result in brain injury and to what extent. Current neuroimaging techniques often cannot detect brain injury induced by head impacts, and some athletes may not notice subtle symptoms or may be loath to report their symptoms lest they be removed from play.

In this paper, the authors used helmet-based accelerometers and measurements of serum biomarkers of traumatic brain injury (TBI) to examine the effects of high-acceleration head impacts (HHIs) and to specifically answer the following questions: * Would HHIs result in high serum levels of biomarkers of TBI, even in the absence of clinical symptoms of concussion? * What would be the longitudinal profile of TBI markers in athletes over the course of a high-school football season?

Sixteen high-school varsity football players wore helmet-based accelerators that measured and recorded all head impact data during practices and games throughout the 2016 football season. An HHI was defined as a hit to the head involving both linear acceleration greater than 95g and rotational acceleration greater than 3760 rad/second2. During the entire football season a total of 7,756 head impacts were recorded, of which only 11 (0.001%) met the criteria of an HHI. Six athletes experienced one or more HHIs at some point during the season; five other athletes who did not experience an HHI served as controls.

Blood samples were collected from players at the beginning of the season (16 players), at the end of a game in which an HHI occurred (6 players), following the final game (5 players used as controls for the 6 players with HHI), and after the end of the season (12 players in whom there was no diagnosis of concussion and no discrepancy in biomarker analyses). The athletes' blood samples were tested for serum levels of the following TBI markers: tau, ubiquitin C-terminal hydrolase L1 (UCH-L1), neurofilament light protein, glial fibrillary acidic protein, and spectrin breakdown products.

The authors' review of TBI biomarker levels showed statistically significant increases in serum levels of both tau and UCH-L1 after an athlete sustained a single HHI, compared with levels in athletes who did not experience an HHI. When the authors examined TBI biomarker levels over the course of the season, they also found statistically significant increases in post-season levels of both tau and UCH-L1, compared to pre-season levels, in athletes with no diagnosis of concussion. There were no significant increases in the serum levels of the other TBI biomarkers that were tested.

UCH-L1 is a biomarker of neuronal body injury and tau is a biomarker of axonal injury. In their prospective, observational cohort study, Joseph and colleagues identified an association between increased biomarkers of neuronal and axonal head injury and HHI in high-school varsity football players. In addition, the authors showed an association between increased biomarkers of neuronal and axonal head injury, and athletes who played throughout the course of an entire football season, even those athletes in whom no HHI exposure occurred.

The authors acknowledge the small sample size, the lack of non-collision sport controls, and other limitations of the study. They indicate difficulty in trying to interpret the present findings, because the football players did not exhibit the clinical signs and symptoms of concussion. They also raise several questions that can only be answered by future studies.

When asked about the importance of this pilot study, Dr. Joseph responded, "This study suggests asymptomatic high acceleration head impacts, which represent only 0.001% of all impacts, may be on the same spectrum as concussion. Whether these elevations in blood biomarkers of traumatic brain injury are clinically significant is yet to be known. However, we are excited as this potentially provides a new avenue to reduce the risk to young athletes. Specifically, we believe that technological improvements and refinements of game rules may be able to reduce the incidence of HHI."
-end-
Joseph JR, Swallow JS, Willsey K, Lapointe AP, Khalatbari S, Korley FK, Oppenlander ME, Park P, Szerlip NJ, Broglio SP. Elevated markers of brain injury as a result of clinically asymptomatic high-acceleration head impacts in high-school football athletes. Journal of Neurosurgery, published online, ahead of print, July 3, 2018; DOI: 10.3171/2017.12.JNS172386.

Disclosure: Dr. Park reports serving as a consultant to Globus, Medtronic, NuVasive, and Zimmer-Biomet; he also reports receiving a royalty from Globus.

For additional information, please contact: Ms. Jo Ann M. Eliason, Communications Manager, Journal of Neurosurgery Publishing Group, One Morton Drive, Suite 200, Charlottesville, VA 22903. Email: jaeliason@thejns.org; Phone: 434-982-1209.

For 74 years, the Journal of Neurosurgery has been recognized by neurosurgeons and other medical specialists the world over for its authoritative clinical articles, cutting-edge laboratory research papers, renowned case reports, expert technical notes, and more. Each article is rigorously peer reviewed. The Journal of Neurosurgery is published monthly by the JNS Publishing Group, the scholarly journal division of the American Association of Neurological Surgeons. Other peer-reviewed journals published by the JNS Publishing Group each month include Neurosurgical Focus, the Journal of Neurosurgery: Spine, and the Journal of Neurosurgery: Pediatrics. All four journals can be accessed at http://www.thejns.org.

Founded in 1931 as the Harvey Cushing Society, the American Association of Neurological Surgeons (AANS) is a scientific and educational association with more than 10,000 members worldwide. The AANS is dedicated to advancing the specialty of neurological surgery in order to provide the highest quality of neurosurgical care to the public. All active members of the AANS are certified by the American Board of Neurological Surgery, the Royal College of Physicians and Surgeons (Neurosurgery) of Canada or the Mexican Council of Neurological Surgery, AC. Neurological surgery is the medical specialty concerned with the prevention, diagnosis, treatment and rehabilitation of disorders that affect the entire nervous system including the brain, spinal column, spinal cord, and peripheral nerves. For more information, visit http://www.AANS.org.

Journal of Neurosurgery Publishing Group

Related Traumatic Brain Injury Articles from Brightsurf:

Point-of-care biomarker assay for traumatic brain injury
Intracranial abnormalities on CT scan in patients with traumatic brain injury (TBI) can be predicted by glial fibrillary acidic protein (GFAP) levels in the blood.

Long-studied protein could be a measure of traumatic brain injury
WRAIR scientists have recently demonstrated that cathepsin B, a well-studied protein important to brain development and function, can be used as biomarker, or indicator of severity, for TBI.

Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.

Blue light can help heal mild traumatic brain injury
Daily exposure to blue wavelength light each morning helps to re-entrain the circadian rhythm so that people get better, more regular sleep which was translated into improvements in cognitive function, reduced daytime sleepiness and actual brain repair.

Dealing a therapeutic counterblow to traumatic brain injury
A team of NJIT biomedical engineers are developing a therapy which shows early indications it can protect neurons and stimulate the regrowth of blood vessels in damaged tissue.

Predictors of cognitive recovery following mild to severe traumatic brain injury
Researchers have shown that higher intelligence and younger age are predictors of greater cognitive recovery 2-5 years post-mild to severe traumatic brain injury (TBI).

Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.

Traumatic brain injury and kids: New treatment guidelines issued
To help promote the highest standards of care, and improve the overall rates of survival and recovery following TBI, a panel of pediatric critical care, neurosurgery and other pediatric experts today issued the third edition of the Brain Trauma Foundation Guidelines for the Management of Pediatric Severe TBI.

Addressing sleep disorders after traumatic brain injury
Amsterdam, NL, December 10, 2018 - Disorders of sleep are some of the most common problems experienced by patients after traumatic brain injury (TBI).

Rutgers researchers discover possible cause for Alzheimer's and traumatic brain injury
Rutgers researchers discover a possible cause for Alzheimer's and traumatic brain injury, and the new mechanism may have also led to the discovery of an effective treatment.

Read More: Traumatic Brain Injury News and Traumatic Brain Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.