Nav: Home

Sound waves could provide 'liquid biopsies'

July 03, 2018

DURHAM, N.C. -- Using sound waves, an international team of researchers has developed a gentle, contact-free method for separating circulating tumor cells from blood samples that is fast and efficient enough for clinical use.

Circulating tumor cells (CTCs) are small pieces of a tumor that break away and flow through the bloodstream. They contain a wealth of information about the tumor, such as its type, physical characteristics and genetic mutations.

The ability to quickly and efficiently harvest and grow these cells from a blood sample would enable "liquid biopsies" capable of providing robust diagnosis, prognosis and suggestions for treatment strategies based on individual CTC profiling.

CTCs are, however, extremely rare and difficult to catch. There are typically only a handful for every few billion blood cells running through a patient's veins. And while there are many technologies designed to separate tumor cells from normal blood cells, none of them are perfect. They tend to damage or kill the cells in the process, lack efficiency, only work on specific types of cancer, or take far too long to be used in many situations.

In a new study, researchers from Duke University, MIT and Nanyang Technological University (Singapore) demonstrate a platform based on sound waves that is capable of separating CTCs from a 7.5-mL vial of blood with at least 86 percent efficiency in less than an hour. With additional improvements, the researchers hope the technology will form the basis of a new test through an inexpensive, disposable chip.

The results appear July 3 in the journal Small.

Every year cancer claims the lives of millions of people around the world and researchers are still searching for better tools for cancer diagnosis, prognosis and treatment," said Tony Jun Huang, the William Bevan Professor of Mechanical Engineering and Materials Science at Duke.

"Biopsy is the gold standard technique for cancer diagnosis," Huang said. "But it is painful and invasive and is often not administered until late in the cancer's development. With our circulating tumor cell separation technology, we could potentially help find out, in a non-invasive manner, whether the patient has cancer, where the cancer is located, what stage it's in, and what drugs would work best. All from a small sample of blood drawn from the patient."

The technology works by setting up a standing sound wave at an angle to a fluid flowing through a tiny channel. Because sound is nothing more than a pressure wave, this sets up pockets of pressure that push on particles suspended in the liquid as they pass. This acoustic force acts more strongly on the larger, more rigid cancer cells than on normal blood cells, pushing the CTCs into a separate channel for collection.

The power intensity and frequency of the sound waves are similar to those used in ultrasonic imaging, which is used safely in numerous medical procedures. The risk of damage to the CTCs is reduced even further because each cell experiences the acoustic wave for only a fraction of a second and does not require labeling or surface modification. These features give the technique the best possible chance at maintaining the functions and native states of the CTCs.

The approach was first demonstrated three years ago in a proof-of-concept study and has since been improved to the point where it could be useful in a clinical setting. The result is a prototype device that processes fluid at a rate of 7.5 mL/hour, seven times faster than the original, without sacrificing any of its 86 percent efficiency or numerous advantages over other methods.

"The biggest asset of this acoustic method of separation is that it's very gentle on the circulating tumor cells," said Andrew Armstrong, associate professor of medicine, surgery, and pharmacology and cancer biology at the Duke University School of Medicine. "The cancer cells remain viable after passing through the chip and can be characterized, cultured or profiled, which allows us to do genotyping or phenotyping to better understand how to kill them."

"The idea is to develop personalized medicine approaches to individual patients based on their cancer biology, similar to what infectious disease doctors do with bacterial cultures and antibiotics," Armstrong said.

In the paper, Armstrong demonstrated the technology to collect circulating tumor cells from men with prostate cancer and successfully profiled them for a range of markers and short-term growth characteristics. The researchers demonstrate that CTCs from patients vary widely in their expression of key targets for therapy, such as prostate-specific membrane antigen (PSMA), which is commonly used for imaging and for targeting prostate cancer in the clinic.

Moving forward, Huang is continuing to develop the technology to increase both its speed and efficiency, while Armstrong is working to establish the technique's feasibility in a number of culturing and profiling projects to show its potential for clinical impact. The pair will also use the technology in a variety of research projects, such as working to understand what allows CTCs to survive in the bloodstream and metastasize, or spread throughout the body.

"The only FDA-approved technology for CTC detection can only count and do basic characterizations of CTCs but cannot grow CTCs outside of the body, because it basically kills the cells in the process," Armstrong said. "Being able to get to these cells while they're still alive gives us at least a chance at culturing them or profiling them outside of the body to do the types of drug sensitivity and genetic testing that may better inform therapy."
-end-
This research was supported by the National Institutes of Health (R01 GM112048, R33 EB019785) and the National Science Foundation (CBET-1438126, IDBR-1455658).

"Circulating Tumor Cell Phenotyping via High-Throughput Acoustic Separation." Mengxi Wu, Po-Hsun Huang, Rui Zhang, Zhangming Mao, Chuyi Chen, Gabor Kemeny, Peng Li, Adrian V. Lee, Rekha Gyanchandani, Andrew J. Armstrong, Ming Dao, Subra Suresh, and Tony Jun Huang. Small, 2018. DOI: 10.1002/smll.201801131

Duke University

Related Prostate Cancer Articles:

ASCO and Cancer Care Ontario update guideline on radiation therapy for prostate cancer
The American Society of Clinical Oncology (ASCO) and Cancer Care Ontario today issued a joint clinical practice guideline update on brachytherapy (internal radiation) for patients with prostate cancer.
Patient prostate tissue used to create unique model of prostate cancer biology
For the first time, researchers have been able to grow, in a lab, both normal and primary cancerous prostate cells from a patient, and then implant a million of the cancer cells into a mouse to track how the tumor progresses.
Moffitt Cancer Center awarded $3.2 million grant to study bone metastasis in prostate cancer
Moffitt researchers David Basanta, Ph.D., and Conor Lynch, Ph.D., have been awarded a U01 grant to investigate prostate cancer metastasis.
New findings concerning hereditary prostate cancer
For the first time ever, researchers have differentiated the risks of developing indolent or aggressive prostate cancer in men with a family history of the disease.
Prostate cancer discovery may make it easier to kill cancer cells
A newly discovered connection between two common prostate cancer treatments may soon make prostate cancer cells easier to destroy.
New test for prostate cancer significantly improves prostate cancer screening
A study from Karolinska Institutet in Sweden shows that a new test for prostate cancer is better at detecting aggressive cancer than PSA.
The dilemma of screening for prostate cancer
Primary care providers are put in a difficult position when screening their male patients for prostate cancer -- some guidelines suggest that testing the general population lacks evidence whereas others state that it is appropriate in certain patients.
Risk factors for prostate cancer
New research suggests that age, race and family history are the biggest risk factors for a man to develop prostate cancer, although high blood pressure, high cholesterol, vitamin D deficiency, inflammation of prostate, and vasectomy also add to the risk.
Prostate cancer is 5 different diseases
Cancer Research UK scientists have for the first time identified that there are five distinct types of prostate cancer and found a way to distinguish between them, according to a landmark study published today in EBioMedicine.
UH Seidman Cancer Center performs first-ever prostate cancer treatment
The radiation oncology team at UH Seidman Cancer Center in Cleveland performed the first-ever prostate cancer treatment April 3 using a newly-approved device -- SpaceOAR which enhances the efficacy of radiation treatment by protecting organs surrounding the prostate.

Related Prostate Cancer Reading:

Dr. Patrick Walsh's Guide to Surviving Prostate Cancer
by Patrick C. Walsh (Author), Janet Farrar Worthington (Author)

The Key to Prostate Cancer: 30 Experts Explain 15 Stages of Prostate Cancer
by Dr Mark Scholz (Author)

You Can Beat Prostate Cancer: And You Don't Need Surgery to Do It
by Robert J. Marckini (Author)

Prostate Cancer: A New Approach to Treatment and Healing
by Dr. Emilia A. Ripoll (Author), Mark B. Saunders (Author)

Prostate and Cancer: A Family Guide to Diagnosis, Treatment, and Survival
by Sheldon Marks (Author)

An ABC of Prostate Cancer Today: My Journey over 4 Continents to find the BEST Cure
by Alan G Lawrenson (Author)

100 Questions & Answers About Prostate Cancer
by Pamela Ellsworth (Author)

Prostate Cancer For Dummies
by Paul H. Lange (Author), Christine Adamec (Author)

Winning the Battle Against Prostate Cancer: Get The Treatment That's Right For You
by Gerald Chodak MD (Author)

Prostate Cancer Breakthroughs: The New Options You Need to Know About
by Jay S. Cohen (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.