Guiding sound waves through a maze

July 03, 2018

We are constantly dealing with waves that are deflected in complex ways: this could be a light beam passing through a glass of milk and being dispersed in all directions, or electromagnetic waves from mobile phone masts being dispersed or absorbed, causing us to complain about poor reception in indoor areas.

Researchers at TU Wien are developing methods for manipulating waves in a targeted manner, so that they can move forward with almost no restriction. In a partnership with research groups from the École Polytechnique Fédérale de Lausanne (EPFL) and the University of Crete, this method has now been implemented in an experiment. Using precisely controlled loudspeakers, it has been possible to send a sound wave through a tube containing various obstacles. In the long term, technologies like this could enable light waves to be manipulated and objects to be made invisible.

Light or sound - it all depends on the wave

Sound waves were chosen in order to test the concept for loss-free wave transmission. "In principle, our technology can be applied to any type of wave", says Prof. Stefan Rotter from the Institute of Theoretical Physics at TU Wien. "From a mathematical perspective, it is irrelevant whether we are dealing with light waves, sound waves or quantum matter waves - acoustics experiments are, however, particularly illustrative in terms of their implementation."

In order to manipulate the wave in precisely the desired manner, energy has to be supplied or removed at specific locations. This is done using special loudspeakers that are mounted along a sound tube with a length of several metres. "The purpose of the loudspeakers is not, however, to simply reproduce the original sound wave on the other side of the tube - that would be too easy", explains Andre Brandstötter, a co-author of the study and doctoral student in Stefan Rotter's group. "The idea is to manipulate the sound wave point by point and to guide it through the tube in such a way that it always has the same strength right in front of the loudspeakers."

The loudspeakers are controlled such as to strengthen or weaken the sound wave locally. "This allows us to counteract the complex dispersal that would otherwise be unavoidable when the wave encounters an obstacle", says Rotter.

The tube maze

The experiment was carried out using an air-filled tube containing irregular obstacles. If you pass a sound wave through the tube, almost no sound reaches the end. However, if the loudspeakers installed in the tube are controlled according to the mathematical rules developed by the team of researchers, the sound wave leaves the tube as if it has not encountered a single obstacle along the way.

The experiment in Lausanne shows that TU Wien's wave manipulation concept works well in practice. The next step is now to build on the potential of these technologies. "The ultimate goal would be to achieve the same results in three-dimensional space with light waves, which would allow us to make objects invisible", says Stefan Rotter. While such a potential 'invisibility cloak' for light will certainly require several more steps to work in practice, the technology could already now be of great interest for a diverse range of message transmission applications.
-end-
Contact:

Prof. Stefan Rotter
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13618
stefan.rotter@tuwien.ac.at

Vienna University of Technology

Related Sound Waves Articles from Brightsurf:

Sound waves power new advances in drug delivery and smart materials
Sound waves have been part of science and medicine for decades, but the technologies have always relied on low frequencies.

Scientists make sound-waves from a quantum vacuum at the Black Hole laboratory
Researchers have developed a new theory for observing a quantum vacuum that could lead to new insights into the behaviour of black holes.

Remembrance of waves past: memory imprints motion on scattered waves
Now, it appears that between relativity and the classical (stationary) wave regime, there exists another regime of wave phenomena, where memory influences the scattering process.

Even if you want to, you can't ignore how people look or sound
Your perceptions of someone you just met are influenced in part by what they look like and how they sound.

Scientists achieve major breakthrough in preserving integrity of sound waves
In a breakthrough experiment, physicist and engineers at the CUNY ASRC have shown that it is possible to limit the movement of sound to a single direction without interruption even when there are deformations along the pathway.

Shaking light with sound
Combining integrated photonics and MEMS technology, scientists from EPFL and Purdue University demonstrate monolithic piezoelectric control of integrated optical frequency combs with bulk acoustic waves.

Sound waves transport droplets for rewritable lab-on-a-chip devices
Engineers at Duke University have demonstrated a versatile microfluidic lab-on-a-chip that uses sound waves to create tunnels in oil to digitally manipulate and transport droplets.

A sound treatment
University of Utah biomedical engineering assistant professor Jan Kubanek has discovered that sound waves of high frequency (ultrasound) can be emitted into a patient's brain to alter his or her state.

Light, sound, action: Extending the life of acoustic waves on microchips
Data centres and digital information processors are reaching their capacity limits and producing heat.

Cooling magnets with sound
Today, most quantum experiments are carried out with the help of light, including those in nanomechanics, where tiny objects are cooled with electromagnetic waves to such an extent that they reveal quantum properties.

Read More: Sound Waves News and Sound Waves Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.