Nav: Home

NASA's NuSTAR mission proves superstar Eta Carinae shoots cosmic rays

July 03, 2018

A new study using data from NASA's NuSTAR space telescope suggests that Eta Carinae, the most luminous and massive stellar system within 10,000 light-years, is accelerating particles to high energies -- some of which may reach Earth as cosmic rays.

"We know the blast waves of exploded stars can accelerate cosmic ray particles to speeds comparable to that of light, an incredible energy boost," said Kenji Hamaguchi, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and the lead author of the study. "Similar processes must occur in other extreme environments. Our analysis indicates Eta Carinae is one of them."

Astronomers know that cosmic rays with energies greater than 1 billion electron volts (eV) come to us from beyond our solar system. But because these particles -- electrons, protons and atomic nuclei -- all carry an electrical charge, they veer off course whenever they encounter magnetic fields. This scrambles their paths and masks their origins.

Eta Carinae, located about 7,500 light-years away in the southern constellation of Carina, is famous for a 19th century outburst that briefly made it the second-brightest star in the sky. This event also ejected a massive hourglass-shaped nebula, but the cause of the eruption remains poorly understood.

The system contains a pair of massive stars whose eccentric orbits bring them unusually close every 5.5 years. The stars contain 90 and 30 times the mass of our Sun and pass 140 million miles (225 million kilometers) apart at their closest approach -- about the average distance separating Mars and the Sun.

"Both of Eta Carinae's stars drive powerful outflows called stellar winds," said team member Michael Corcoran, also at Goddard. "Where these winds clash changes during the orbital cycle, which produces a periodic signal in low-energy X-rays we've been tracking for more than two decades."

NASA's Fermi Gamma-ray Space Telescope also observes a change in gamma rays -- light packing far more energy than X-rays -- from a source in the direction of Eta Carinae. But Fermi's vision isn't as sharp as X-ray telescopes, so astronomers couldn't confirm the connection.

To bridge the gap between low-energy X-ray monitoring and Fermi observations, Hamaguchi and his colleagues turned to NuSTAR. Launched in 2012, NuSTAR can focus X-rays of much greater energy than any previous telescope. Using both newly taken and archival data, the team examined NuSTAR observations acquired between March 2014 and June 2016, along with lower-energy X-ray observations from the European Space Agency's XMM-Newton satellite over the same period.

Eta Carinae's low-energy, or soft, X-rays come from gas at the interface of the colliding stellar winds, where temperatures exceed 70 million degrees Fahrenheit (40 million degrees Celsius). But NuSTAR detects a source emitting X-rays above 30,000 eV, some three times higher than can be explained by shock waves in the colliding winds. For comparison, the energy of visible light ranges from about 2 to 3 eV.

The team's analysis, presented in a paper published on Monday, July 2, in Nature Astronomy, shows that these "hard" X-rays vary with the binary orbital period and show a similar pattern of energy output as the gamma rays observed by Fermi.

The researchers say that the best explanation for both the hard X-ray and the gamma-ray emission is electrons accelerated in violent shock waves along the boundary of the colliding stellar winds. The X-rays detected by NuSTAR and the gamma rays detected by Fermi arise from starlight given a huge energy boost by interactions with these electrons.

Some of the superfast electrons, as well as other accelerated particles, must escape the system and perhaps some eventually wander to Earth, where they may be detected as cosmic rays.

"We've known for some time that the region around Eta Carinae is the source of energetic emission in high-energy X-rays and gamma rays", said Fiona Harrison, the principal investigator of NuSTAR and a professor of astronomy at Caltech in Pasadena, California. "But until NuSTAR was able to pinpoint the radiation, show it comes from the binary and study its properties in detail, the origin was mysterious."
-end-
NuSTAR is a Small Explorer mission led by Caltech and managed by JPL for NASA's Science Mission Directorate in Washington. NuSTAR was developed in partnership with the Danish Technical University and the Italian Space Agency (ASI). The spacecraft was built by Orbital Sciences Corp., Dulles, Virginia. NuSTAR's mission operations center is at UC Berkeley, and the official data archive is at NASA's High Energy Astrophysics Science Archive Research Center. ASI provides the mission's ground station and a mirror archive. Caltech manages JPL for NASA.

For more information on NuSTAR, visit:

https://www.nasa.gov/nustar

http://www.nustar.caltech.edu

NASA/Goddard Space Flight Center

Related Cosmic Rays Articles:

Chest X-rays contain information that can be harvested with AI
The most frequently performed imaging exam in medicine, the chest X-ray, holds 'hidden' prognostic information that can be harvested with artificial intelligence (AI).
Hundreds of sharks and rays tangled in plastic
Hundreds of sharks and rays have become tangled in plastic waste in the world's oceans, new research shows.
X and gamma rays --Even more powerful
International group of researchers including scientists from Skoltech have invented a new method for the generation of intense X and gamma-ray radiation based on Nonlinear Compton Scattering.
Electron-gun simulations explain the mechanisms of high-energy cosmic rays
A new study published in EPJ D provides a rudimentary model for simulating cosmic rays' collisions with planets by looking at the model of electrons detached from a negative ion using photons.
Illuminating nanoparticle growth with X-rays
Ultrabright X-rays at NSLS-II reveal key details of catalyst growth for more efficient hydrogen fuel cells.
Telescope maps cosmic rays in large and small magellanic clouds
A radio telescope in outback Western Australia has been used to observe radiation from cosmic rays in two neighbouring galaxies, showing areas of star formation and echoes of past supernovae.
Balloon-borne telescope looks for cosmic gamma rays
Cosmic gamma rays can provide us with important insights into the high-energy phenomena in our universe.
Neutrino observation points to one source of high-energy cosmic rays
Observations made by researchers using a National Science Foundation (NSF) detector at the South Pole and verified by ground- and space-based telescopes have produced the first evidence of one source of high-energy cosmic neutrinos.
NASA's NuSTAR mission proves superstar Eta Carinae shoots cosmic rays
NASA's NuSTAR space telescope shows that Eta Carinae, the most luminous and massive stellar system within 10,000 light-years, is accelerating cosmic rays.
Cosmic x-rays may provide clues to the nature of dark matter
Researchers at Johannes Gutenberg University Mainz in Germany have presented a novel theory of dark matter, which implies that dark matter particles may be very different from what is normally assumed.
More Cosmic Rays News and Cosmic Rays Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab