Nav: Home

What's in an egg? Oocyte factors that can reprogram adult cells

July 03, 2018

New Rochelle, NY, July 3, 2018-The promise of generating truly pluripotent stem cells from terminally differentiated adult cell types continues to captivate scientists who envision great potential for therapeutic interventions. The two primary methods involve either the replacement of oocyte nuclei with adult somatic cell nuclei--a process known as somatic cell nuclear transfer (SCNT)--or the introduction, typically by viruses, of a cocktail of specific transcription factors to create induced pluripotent stem cells (iPSCs). SCNT is more efficient and less variable but technically more demanding, and the availability of high-quality oocytes is limited. Thus, the potential to combine these approaches by identifying the crucial factors in oocytes that mediate SCNT efficiency is reviewed in a new article published in Stem Cells and Development, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Stem Cells and Developmentwebsite until August 3, 2018.

In "Somatic Cell Reprogramming Informed by the Oocyte," Elena González-Muñoz, PhD, Andalusian Center for Nanomedicine and Biotechnology, Málaga, Spain, and Jose B. Cibelli, PhD, DVM, Michigan State University, categorically describe the known and potential oocyte-specific factors that can drive or assist somatic cell reprogramming by modulating the epigenetic landscape. They sort these factors into maternal histones and their chaperones, histone deacetylases and acetyltransferases, histone methylation modifiers, DNA methylation modifiers, transcription factors, miRNAs, and lncRNAs. Specific epigenetic modifications known to influence pluripotency are discussed along with their disruption by small molecules. Collectively, the authors provide a logical framework for understanding how oocyte factors can de-differentiate committed cells and a platform for studying and discovering optimal combinations to increase the efficiency, reproducibility, and safety of this technique.
-end-
"Elena González-Muñoz and Jose Cibelli provide an insightful treatise on recent advances in animal cloning and how those studies inform our understanding of induced pluripotency of somatic cells". says Editor-in-Chief Graham C. Parker, PhD, The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI.

About the Journal

Stem Cells and Development is an authoritative peer-reviewed journal published 24 times per year in print and online. The Journal is dedicated to communication and objective analysis of developments in the biology, characteristics, and therapeutic utility of stem cells, especially those of the hematopoietic system. A complete table of contents and free sample issue may be viewed on the Stem Cells and Development website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Cellular Reprogramming, Tissue Engineering, and Human Gene Therapy. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Mary Ann Liebert, Inc./Genetic Engineering News

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...