Nav: Home

World first: Homing instinct applied to stem cells show cells 'home' to cardiac tissue

July 03, 2019

In a world first, scientists have found a new way to direct stem cells to heart tissue. The findings, led by researchers at the University of Bristol and published in Chemical Science, could radically improve the treatment for cardiovascular disease, which causes more than a quarter of all deaths in the UK (1).

To date, trials using stem cells, which are taken and grown from the patient or donor and injected into the patient's heart to regenerate damaged tissue, have produced promising results.

However, while these next generation cell therapies are on the horizon, significant challenges associated with the distribution of the stem cells have remained. High blood flow in the heart combined with various 'tissue sinks', that circulating cells come into contact with, means the majority of the stem cells end up in the lungs and spleen.

Now, researchers from Bristol's School of Cellular and Molecular Medicine have found a way to overcome this by modifying stem cells with a special protein so they 'home' to heart tissue.

Dr Adam Perriman, the study's lead author, Associate Professor in Biomaterials, UKRI Future Leaders Fellow and founder of the cell therapy technology company CytoSeek, explained: "With regenerative cell therapies, where you are trying to treat someone after a heart attack, the cells rarely go to where you want them to go. Our aim is to use this technology to re-engineer the membrane of cells, so that when they're injected, they'll home to specific tissues of our choice.

"We know that some bacterial cells contain properties that enable them to detect and 'home' to diseased tissue. For example, the oral bacterial found in our mouths can occasionally cause strep throat. If it enters the blood stream it can 'home' to damaged tissue in the heart causing infective endocarditis. Our aim was to replicate the homing ability of bacteria cells and apply it to stem cells."

The team developed the technology by looking at how bacterial cells use a protein called an adhesin to 'home' to heart tissue. Using this theory, the researchers were able to produce an artificial cell membrane binding version of the adhesin that could be 'painted' on the outside of the stem cells. In an animal model, the team were able to demonstrate that this new cell modification technique worked by directing stem cells to the heart in a mouse.

Dr Perriman added: "Our findings demonstrate that the cardiac homing properties of infectious bacteria can be transferred to human stem cells. Significantly, we show in a mouse model that the designer adhesin protein spontaneously inserts into the plasma membrane of the stem cells with no cytotoxity, and then directs the modified cells to the heart after transplant. To our knowledge, this is the first time that the targeting properties of infectious bacteria have been transferred to mammalian cells.

"This new technique carries enormous potential for the seven million people currently living with heart disease in the UK."

Dr Perriman's UKRI Future Leaders fellowship is based on research funded by the Elizabeth Blackwell Institute-funded Catalyst project. He is also a member of the University's BrisSynBio, a multi-disciplinary research centre part of the Bristol BioDesign Institute, that focuses on the biomolecular design and engineering aspects of synthetic biology.

Dr Perriman is well-known for his pioneering research on the construction and study of novel synthetic biomolecular systems for regenerative engineering.
-end-


University of Bristol

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.