First complete wiring diagram of an animal's nervous system

July 03, 2019

July 3, 2019--(BRONX, NY)--In a study published online today in Nature, researchers at Albert Einstein College of Medicine describe the first complete wiring diagram of the nervous system of an animal, the roundworm Caenorhabditis elegans, used by scientists worldwide as a model organism. The study includes adults of both sexes and reveals substantial differences between them.

The findings mark a major milestone in the field of "connectomics," the effort to map the myriad neural connections in a brain, brain region, or nervous system to find the specific nerve connections responsible for particular behaviors.

"Structure is always central in biology," said study leader Scott Emmons, Ph.D., professor of genetics and in the Dominick P. Purpura Department of Neuroscience and the Siegfried Ullmann Chair in Molecular Genetics at Einstein. "The structure of DNA revealed how genes work, and the structure of proteins revealed how enzymes function. Now, the structure of the nervous system is revealing how animals behave and how neural connections go wrong to cause disease."

Researchers have hypothesized that some neurological and psychiatric disorders, such as schizophrenia and autism, are "connectopathies," that is, problems caused by "faulty wiring." "This hypothesis is strengthened by the finding that several mental disorders are associated with mutations in genes that are thought to determine connectivity," said Dr. Emmons. "Connectomics has the potential to help us understand the basis of some mental illnesses, possibly suggesting avenues for therapy."

A Model Organism

Because C. elegans is so tiny--adults are just one millimeter long and have only about 1,000 cells--its simple nervous system of a few hundred neurons (302 in the hermaphrodite/female sex, 385 in the male) makes it one of the best animal models for understanding the billions-times-more-complex human brain. It was also the first multi-cellular organism to have its entire genome sequenced.

Dr. Emmons' study builds on the groundbreaking work of the late British biologist Sydney Brenner, who in 2002 shared the Nobel Prize in Physiology or Medicine for his C. elegans research. Dr. Brenner's laboratory, in an effort led by laboratory member John White, published the first map of the C. elegans nervous system in 1986, after painstakingly analyzing neural structures visible on thousands of serial electron micrographs of the roundworm. Each image consisted of a cross-sectional "slice" a thousand times thinner than a human hair. He and his colleagues manually "connected the dots" between each slice, linking the structures from one image to another to create detailed representations of the nerves and the 5,000 or so connections (synapses) among them.

The tour de force effort by Drs. Brenner and White, 20 years in the making, launched the field of connectomics and established the roundworm as an essential animal model for the study of biology and human disease. But their map, informally called "The Mind of a Worm," skipped large portions of the worm's body and included just one of the sexes--the hermaphrodite, or female--not the male.

Taking Up the Baton

For the new study, Dr. Emmons' team analyzed new roundworm electron micrographs as well as Dr. Brenner's old ones and pieced them together using specially developed software to create complete wiring diagrams of entire adult animals of both C. elegans sexes. The diagrams include all connections between individual neurons, connections from neurons to the worm's muscles and other tissues, such as the gut and skin, and synapses between the muscle cells, with estimates of the strength of those synapses.

"While the synaptic pathways in the two sexes are substantially similar, a number of the synapses differ in strength, providing a basis for understanding sex-specific behaviors," said Dr. Emmons. The primary sex differences pertain to reproductive functions: in vulval and uterine muscles and the motor neurons that control them in the hermaphrodite; and in the large number of additional neurons, sex muscles, and connections in the tail that generate the circuits for copulation in the male. But beyond these, a surprising number of synapses between neurons in central pathways shared by both sexes also appear to differ considerably in strength.

"These connected networks serve as starting points for deciphering the neural control of C. elegans behavior," said Dr. Emmons. "Since the roundworm nervous system contains many of the same molecules as the human nervous system, what we learn about the former can help us understand the latter."

Dr. Emmons is currently studying how the roundworm connectome is encoded by its genome.
-end-
The study is titled, "Whole-Animal Connectomes of both C. elegans Sexes." Additional Einstein authors are: Steven J. Cook, Ph.D., Travis A. Jarrell, Ph.D., Christopher Brittin, Ph.D., Yi Wang, Ph.D., Maksim A. Yakovlev, Ken C. Q. Nguyen, Leo T.-H. Tang, Ph.D., Hannes E. Bülow, Ph.D., and David H. Hall, Ph.D. The other contributors include: Adam E. Bloniarz, Ph.D., at Google, Emily A. Bayer, Ph.D., at Columbia University, Janet S. Duerr, Ph.D., at Ohio University, and Oliver Hobert, Ph.D., at Hughes Medical Institute, Columbia University.

This work was supported by grants from the National Institutes of Health (F31NS096863, R01NS096672, R37NS039996, P30HD071593, R01MH112689, T32GM007491, R01GM066897, and OD 010943), and the G. Harold and Leila Y. Mathers Charitable Foundation.

The authors declare no conflicts of interests.

About Albert Einstein College of Medicine

Albert Einstein College of Medicine, is one of the nation's premier centers for research, medical education and clinical investigation. During the 2018-2019 academic year, Einstein is home to 711 M.D. students, 160 Ph.D. students, 107 students in the combined M.D./Ph.D. program, and 265 postdoctoral research fellows . The College of Medicine has more than 1,800 full-time faculty members located on the main campus and at its clinical affiliates. In 2018, Einstein received more than $172 million in awards from the National Institutes of Health (NIH). This includes the funding of major research centers at Einstein in aging, intellectual development disorders, diabetes, cancer, clinical and translational research, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Einstein runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States through Montefiore and an affiliation network involving hospitals and medical centers in the Bronx, Brooklyn and on Long Island. For more information, please visit http://www.einstein.yu.edu, read our blog, follow us on Twitter, like us on Facebook and view us on YouTube.

Albert Einstein College of Medicine

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.