Nav: Home

Joslin researchers uncover protective factor in diabetic eye disease

July 03, 2019

BOSTON - (July 3, 2019) - Researchers at Joslin Diabetes Center have shown that a protein found in the eye can protect against and potentially treat diabetic eye disease. At high enough levels, Retinol Binding Protein 3 (or RBP3) prevents the development of diabetic retinopathy. If introduced early enough in the development of the disease, RBP3 was shown to reverse the effects of the complication in rodent models of diabetes. These results are reported today in Science Translational Medicine.

"The level of RBP3 in the eye's vitreous and retina are higher in people who don't progress to diabetic eye disease than in those who do," says George King, Chief Scientific Officer at Joslin Diabetes Center and senior author on the paper. "Building on that observation, we saw that if you overexpress RBP3 by molecular methods [in animal models], you can prevent the onset of diabetic eye disease. And when we injected RBP3 itself into the vitreous of diabetic rats, we reversed some of the early changes of diabetic eye disease."

People with diabetes have a high risk of developing complications due to extended periods of elevated glucose levels. These complications could include nerve damage, kidney disease, and eye disease. But a rare subset of people who have had insulin-dependent diabetes for more than 50 years have avoided such complications. For 15 years, Joslin researchers have tracked these individuals as part of the Medalist Study. They noted that 35 percent of patients avoided retinopathy, even when they had elevated glucose levels.

Dr. King and his team deduced that these patients must have something endogenous--or created by their own body that are neutralizing the toxic effects of high glucose levels. This new study aimed to build on this observation, to determine which molecules could be responsible for the protection of the eye.

They took biosamples from the eyes of Medalists -- both from living patients during surgery and from people who had donated their eyes postmortem. They then characterized the many proteins that were present, to determine if any proteins were elevated more in the protected eyes than in eyes of people who developed retinopathy.

They recognized that RBP3, a protein only made in the retina/eye, was elevated. To determine if this was indeed the protective factor they were looking for, they constructed experiments to compare normal versus increased expression of RBP3 in mouse models. Mice with increased RBP3 expression were protected from developing diabetic retinopathy.

Next, the researchers injected pure RBP3 into the vitreous of the eyes of mice in the early stages of retinopathy. The infusion of RBP3 reversed the damages done by early eye disease. They also discovered that diabetes seems to reduce the expression of RBP3 in eye in many subjects, which could explain why its protective effects are limited to only some patients.

"If we could find out what's causing the decrease of RBP3 in the retina in the first place, we could design some kind of treatment to maintain its production, allowing all diabetic patients to have an endogenous protection against eye disease," says Dr. King.

RBP3 is found in all eyes. Normally, it is used to regenerate a certain type of vitamin A in the eye that powers sight-giving rods and cones. But when the eye is exposed to high glucose levels, RBP3 changes its role.

"It appears to decrease the toxic effects of high glucose levels that exist in diabetes by reducing the entering of glucose into several important retinal cells by inhibiting the actions of a glucose transporter, GLUT-1." says Dr. King.

Understanding these mechanisms may allow researchers to develop a targeted treatment to fight early-stage retinopathy. Currently, severe retinopathy can be addressed by the Joslin-developed treatments of either laser photocoagulation or VEGF inhibitor injections.

"We are interested in how we can treat diabetic eye disease at its earliest stages before it gets to the severe forms," says Dr. King.

One surprising finding from this study showed that RBP3, while it mainly resides in the eye, can also be detected to some degree in the bloodstream. Dr. King and team have planned follow-up studies to determine if RBP3 levels in the bloodstream correlate with severity of diabetic retinopathy. If they do, this circulating RBP3 could become a biomarker that doctors can use to screen for retinopathy during regular lab tests.

"That could be a very important screening tool for family or internal medicine doctors who are not experts at examining the eye," says Dr. King. "Right now, all people with diabetes have to be sent to ophthalmologists to really give us a sense of the status of their eyes with regard to diabetes. So, if this could be a general screen, we may be able to catch more cases of retinopathy earlier in the disease course."

Joslin and its Beetham Eye Institute have a strong history of developing treatments for retinopathy. This discovery brings them a step closer to prevention of the devastating complication.

"This has the potential to become equally as important as our previous discovery of VEGF as critical for diabetic proliferative disease or severe diabetic eye disease," King says.
-end-
Other study authors include Yasutaka Maeda, Kyoungmin Park, Allen C. Clermont1, Sonia L. Hernandez, Ward Fickweiler, Qian Li1, Chih-Hao Wang, Samantha M. Paniagua, Fabricio Simao, Atsushi Ishikado, Bei Sun, I-Hsien Wu, Sayaka Katagiri, David M. Pober, Liane J. Tinsley, Robert L. Avery, Edward P. Feener, Timothy S. Kern, Hillary A. Keenan, Lloyd Paul. Aiello, and Jennifer K. Sun.

Funding for the study was provided by the National Eye Institute (NEI), National Institutes of Health (NIH), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), JDRF, the Beatson Foundation Gift, and the Dianne Nunnally Hoppes fund.

About Joslin Diabetes Center

Joslin Diabetes Center is world-renowned for its deep expertise in diabetes treatment and research. Joslin is dedicated to finding a cure for diabetes and ensuring that people with diabetes live long, healthy lives. We develop and disseminate innovative patient therapies and scientific discoveries throughout the world. Joslin is an independent, non-profit institution affiliated with Harvard Medical School, and one of only 16 NIH-designated Diabetes Research Centers in the U.S.

For more information, visit http://www.joslin.org or follow @joslindiabetes | One Joslin Place, Boston, MA 617-309-2400

Joslin Diabetes Center

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Related Diabetes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.