Joslin researchers uncover protective factor in diabetic eye disease

July 03, 2019

BOSTON - (July 3, 2019) - Researchers at Joslin Diabetes Center have shown that a protein found in the eye can protect against and potentially treat diabetic eye disease. At high enough levels, Retinol Binding Protein 3 (or RBP3) prevents the development of diabetic retinopathy. If introduced early enough in the development of the disease, RBP3 was shown to reverse the effects of the complication in rodent models of diabetes. These results are reported today in Science Translational Medicine.

"The level of RBP3 in the eye's vitreous and retina are higher in people who don't progress to diabetic eye disease than in those who do," says George King, Chief Scientific Officer at Joslin Diabetes Center and senior author on the paper. "Building on that observation, we saw that if you overexpress RBP3 by molecular methods [in animal models], you can prevent the onset of diabetic eye disease. And when we injected RBP3 itself into the vitreous of diabetic rats, we reversed some of the early changes of diabetic eye disease."

People with diabetes have a high risk of developing complications due to extended periods of elevated glucose levels. These complications could include nerve damage, kidney disease, and eye disease. But a rare subset of people who have had insulin-dependent diabetes for more than 50 years have avoided such complications. For 15 years, Joslin researchers have tracked these individuals as part of the Medalist Study. They noted that 35 percent of patients avoided retinopathy, even when they had elevated glucose levels.

Dr. King and his team deduced that these patients must have something endogenous--or created by their own body that are neutralizing the toxic effects of high glucose levels. This new study aimed to build on this observation, to determine which molecules could be responsible for the protection of the eye.

They took biosamples from the eyes of Medalists -- both from living patients during surgery and from people who had donated their eyes postmortem. They then characterized the many proteins that were present, to determine if any proteins were elevated more in the protected eyes than in eyes of people who developed retinopathy.

They recognized that RBP3, a protein only made in the retina/eye, was elevated. To determine if this was indeed the protective factor they were looking for, they constructed experiments to compare normal versus increased expression of RBP3 in mouse models. Mice with increased RBP3 expression were protected from developing diabetic retinopathy.

Next, the researchers injected pure RBP3 into the vitreous of the eyes of mice in the early stages of retinopathy. The infusion of RBP3 reversed the damages done by early eye disease. They also discovered that diabetes seems to reduce the expression of RBP3 in eye in many subjects, which could explain why its protective effects are limited to only some patients.

"If we could find out what's causing the decrease of RBP3 in the retina in the first place, we could design some kind of treatment to maintain its production, allowing all diabetic patients to have an endogenous protection against eye disease," says Dr. King.

RBP3 is found in all eyes. Normally, it is used to regenerate a certain type of vitamin A in the eye that powers sight-giving rods and cones. But when the eye is exposed to high glucose levels, RBP3 changes its role.

"It appears to decrease the toxic effects of high glucose levels that exist in diabetes by reducing the entering of glucose into several important retinal cells by inhibiting the actions of a glucose transporter, GLUT-1." says Dr. King.

Understanding these mechanisms may allow researchers to develop a targeted treatment to fight early-stage retinopathy. Currently, severe retinopathy can be addressed by the Joslin-developed treatments of either laser photocoagulation or VEGF inhibitor injections.

"We are interested in how we can treat diabetic eye disease at its earliest stages before it gets to the severe forms," says Dr. King.

One surprising finding from this study showed that RBP3, while it mainly resides in the eye, can also be detected to some degree in the bloodstream. Dr. King and team have planned follow-up studies to determine if RBP3 levels in the bloodstream correlate with severity of diabetic retinopathy. If they do, this circulating RBP3 could become a biomarker that doctors can use to screen for retinopathy during regular lab tests.

"That could be a very important screening tool for family or internal medicine doctors who are not experts at examining the eye," says Dr. King. "Right now, all people with diabetes have to be sent to ophthalmologists to really give us a sense of the status of their eyes with regard to diabetes. So, if this could be a general screen, we may be able to catch more cases of retinopathy earlier in the disease course."

Joslin and its Beetham Eye Institute have a strong history of developing treatments for retinopathy. This discovery brings them a step closer to prevention of the devastating complication.

"This has the potential to become equally as important as our previous discovery of VEGF as critical for diabetic proliferative disease or severe diabetic eye disease," King says.
-end-
Other study authors include Yasutaka Maeda, Kyoungmin Park, Allen C. Clermont1, Sonia L. Hernandez, Ward Fickweiler, Qian Li1, Chih-Hao Wang, Samantha M. Paniagua, Fabricio Simao, Atsushi Ishikado, Bei Sun, I-Hsien Wu, Sayaka Katagiri, David M. Pober, Liane J. Tinsley, Robert L. Avery, Edward P. Feener, Timothy S. Kern, Hillary A. Keenan, Lloyd Paul. Aiello, and Jennifer K. Sun.

Funding for the study was provided by the National Eye Institute (NEI), National Institutes of Health (NIH), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), JDRF, the Beatson Foundation Gift, and the Dianne Nunnally Hoppes fund.

About Joslin Diabetes Center

Joslin Diabetes Center is world-renowned for its deep expertise in diabetes treatment and research. Joslin is dedicated to finding a cure for diabetes and ensuring that people with diabetes live long, healthy lives. We develop and disseminate innovative patient therapies and scientific discoveries throughout the world. Joslin is an independent, non-profit institution affiliated with Harvard Medical School, and one of only 16 NIH-designated Diabetes Research Centers in the U.S.

For more information, visit http://www.joslin.org or follow @joslindiabetes | One Joslin Place, Boston, MA 617-309-2400

Joslin Diabetes Center

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.