Nav: Home

Ancient DNA sheds light on the origins of the Biblical Philistines

July 03, 2019

An international team, led by scientists from the Max Planck Institute for the Science of Human History and the Leon Levy Expedition, retrieved and analyzed, for the first time, genome-wide data from people who lived during the Bronze and Iron Age (~3,600-2,800 years ago) in the ancient port city of Ashkelon, one of the core Philistine cities during the Iron Age. The team found that a European derived ancestry was introduced in Ashkelon around the time of the Philistines' estimated arrival, suggesting that ancestors of the Philistines migrated across the Mediterranean, reaching Ashkelon by the early Iron Age. This European related genetic component was subsequently diluted by the local Levantine gene pool over the succeeding centuries, suggesting intensive admixture between local and foreign populations. These genetic results, published in Science Advances, are a critical step toward understanding the long-disputed origins of the Philistines.

The Philistines are famous for their appearance in the Hebrew Bible as the arch-enemies of the Israelites. However, the ancient texts tell little about the Philistine origins other than a later memory that the Philistines came from "Caphtor" (a Bronze Age name for Crete; Amos 9:7). More than a century ago, Egyptologists proposed that a group called the Peleset in texts of the late twelfth century BCE were the same as the Biblical Philistines. The Egyptians claimed that the Peleset travelled from the "the islands," attacking what is today Cyprus and the Turkish and Syrian coasts, finally attempting to invade Egypt. These hieroglyphic inscriptions were the first indication that the search for the origins of the Philistines should be focused in the late second millennium BCE. From 1985-2016, the Leon Levy Expedition to Ashkelon, a project of the Harvard Semitic Museum, took up the search for the origin of the Philistines at Ashkelon, one of the five "Philistine" cities according to the Hebrew Bible. Led by its founder, the late Lawrence E. Stager, and then by Daniel M. Master, an author of the study and director of the Leon Levy Expedition to Ashkelon, the team found substantial changes in ways of life during the 12th century BCE which they connected to the arrival of the Philistines. Many scholars, however, argued that these cultural changes were merely the result of trade or a local imitation of foreign styles and not the result of a substantial movement of people.

This new study represents the culmination of more than thirty years of archaeological work and of genetic research utilizing state of the art technologies, concluding that the advent of the Philistines in the southern Levant involved a movement of people from the west during the Bronze to Iron Age transition.

Genetic discontinuity between the Bronze and Iron Age people of Ashkelon

The researchers successfully recovered genomic data from the remains of 10 individuals who lived in Ashkelon during the Bronze and Iron Age. This data allowed the team to compare the DNA of the Bronze and Iron Age people of Ashkelon to determine how they were related. The researchers found that individuals across all time periods derived most of their ancestry from the local Levantine gene pool, but that individuals who lived in early Iron Age Ashkelon had a European derived ancestral component that was not present in their Bronze Age predecessors.

"This genetic distinction is due to European-related gene flow introduced in Ashkelon during either the end of the Bronze Age or the beginning of the Iron Age. This timing is in accord with estimates of the Philistines arrival to the coast of the Levant, based on archaeological and textual records," explains Michal Feldman of the Max Planck Institute for the Science of Human History, leading author of the study. "While our modelling suggests a southern European gene pool as a plausible source, future sampling could identify more precisely the populations introducing the European-related component to Ashkelon."

Transient impact of the "European related" gene flow

In analyzing later Iron Age individuals from Ashkelon, the researchers found that the European related component could no longer be traced. "Within no more than two centuries, this genetic footprint introduced during the early Iron Age is no longer detectable and seems to be diluted by a local Levantine related gene pool," states Choongwon Jeong of the Max Planck Institute of the Science of Human History, one of the corresponding authors of the study.

"While, according to ancient texts, the people of Ashkelon in the first millennium BCE remained 'Philistines' to their neighbors, the distinctiveness of their genetic makeup was no longer clear, perhaps due to intermarriage with Levantine groups around them," notes Master.

"This data begins to fill a temporal gap in the genetic map of the southern Levant," explains Johannes Krause of the Max Planck Institute for the Science of Human History, senior author of the study. "At the same time, by the zoomed-in comparative analysis of the Ashkelon genetic time transect, we find that the unique cultural features in the early Iron Age are mirrored by a distinct genetic composition of the early Iron Age people."
-end-


Max Planck Institute for the Science of Human History

Related Bronze Age Articles:

Why life can get better as we age -- study
People say life gets better with age. Now research suggests this may be because older people have the wisdom and time to use mindfulness as a means to improve wellbeing.
Bronze Age diet and farming strategy reconstructed using integrative isotope analysis
Isotope analysis of two Bronze Age El Algar sites in present-day south-eastern Spain provides a integrated picture of diets and farming strategies, according to a study published March 11, 2020 in the open-access journal PLOS ONE by Corina Knipper from the Curt Engelhorn Center for Archaeometry, Germany, and colleagues.
Archaeologists find Bronze Age tombs lined with gold
Archaeologists with the University of Cincinnati have discovered two Bronze Age tombs containing a trove of engraved jewelry and artifacts that promise to unlock secrets about life in ancient Greece.
Archaeology -- Social inequality in Bronze Age households
Archaeogenetic analyses provide new insights into social inequality 4,000 years ago: nuclear families lived together with foreign women and individuals from lower social classes in the same household.
Ancient DNA reveals social inequality in bronze age Europe households
Providing a clearer picture of intra-household inequality in ancient times, new research reports that prehistoric German households near the Lech Valley consisted of a high-status core family and unrelated low-status individuals.
The enigma of bronze age tin
The origin of the tin used in the Bronze Age has long been one of the greatest enigmas in archaeological research.
The beginnings of trade in northwestern Europe during the Bronze Age
People in England were using balance weights and scales to measure the value of materials as early as the late second and early first millennia BC.
Nordic Bronze Age attracted wide variety of migrants to Denmark
Migration patterns in present-day Denmark shifted at the beginning of the Nordic Bronze Age, according to a study published Aug.
Ancient feces reveal how 'marsh diet' left Bronze Age Fen folk infected with parasites
'Coprolites' from the Must Farm archaeological excavation in East Anglia, UK, shows the prehistoric inhabitants were infected by parasitic worms that can be spread by eating raw fish, frogs and shellfish.
The age of water
Groundwater in Egypt's aquifers may be as much as 200,000 years old and that's important to know as officials in that country seek to increasing the use of groundwater, especially in the Eastern Desert, to mitigate growing water stress and allow for agricultural projects.
More Bronze Age News and Bronze Age Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.