New Plant Mutation Produces Tap Root With Large Amounts Of Oil, Proteins, And Starch

July 03, 1997

Scientists at the Carnegie Institution and the University of California, Berkeley, have discovered a mutation in plants that makes the tap root accumulate large amounts of oils, proteins, and starch. The discovery could lead to genetically engineered plants that store commercially useful substances in an enlarged root. The finding could also make possible the creation of more nutritious root crops with a better balance of oil, protein, and starch. (Most root crops in Third World countries, such as cassava and taro, contain only starch.) The mutation was found in the experimental plant Arabidopsis thaliana. Once the gene containing the mutation has been cloned, it should be possible to track down the analogous gene in other plants, such as turnips, radishes, and sweet potato.

The mutation, called "pickle" because of its appearance, was discovered independently by two teams who report their findings in a joint paper in the July 4 issue of Science. The leader of the Carnegie team is Christopher Somerville, director of Carnegie's Department of Plant Biology in Stanford, California. The leader of the Berkeley team is Z. Renee Sung, professor of plant and microbial biology at UC Berkeley.

The pickle mutation mimics what happens in seeds, which typically are the major structures accumulating and storing proteins and oils. That's the reason seeds are excellent sources of these substances, and are nutritionally superior to root crops. The scientists found that the mutated plant fails to switch the tap root cells from their seed or embryonic program of storing protein and oil to the adult program. "Normally after germination the plant begins to express a new set of genes that cause the seedling to mature into an adult," says Somervillle. "In this mutation the cells destined to become primary root cells retain the character of embryonic cells. They fail to make the switch from embryonic to adult." The Carnegie team found that gibberellin, a common plant hormone required for seed germination and growth after germination, plays an important part in the switch from embryo to adult. The mutation has its greatest effect when gibberellin is not present during the first 24 hours of growth, thus establishing a hitherto unknown role for this plant hormone.

For more information, contact

The research was supported by an NSF grant to Sung and a US DOE grant to Somerville. Dr. Somerville can be reached at 415-325- 1521, ext. 203 or; Dr. Sung is at 510-642-6966 or

Carnegie Institution for Science

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to