Scientists Report Cancer Fighting Drug As Possible Treatment For Multiple Sclerosis

July 03, 1998

A drug currently undergoing phase III clinical trials for certain types of cancer may have potential benefit for the treatment of multiple sclerosis (MS), report researchers from The Rockefeller University, Albert Einstein College of Medicine (AECOM), British Biotechnology Pharmaceuticals Ltd. and Harvard Medical School. These findings, published in the July Annals of Neurology, offer a new avenue for treatment of this disease.

"We have shown that a class of drugs called matrix metalloproteinase inhibitors (MMPIs) are effective in treating a mouse model of multiple sclerosis," says Wolfgang Liedtke, M.D., lead author of the paper. "MMPIs have been shown to be safe for people in human trials as a cancer therapy, and we think that people with MS may benefit." Leidtke, now a research associate at Rockefeller, did the work in the laboratory of senior author and MS pioneer Cedric S. Raine, Ph.D., D.Sc., F.R.C.Path., a professor of neurology, neuroscience and pathology at AECOM.

Multiple sclerosis is an unpredictable disease of the central nervous system (CNS) that affects an estimated 250,000 to 350,000 people in the United States, with an annual estimated cost of more than $2.5 billion. Severity of the disease varies, however, in severely affected cases, MS can render a person unable to see, speak or walk. MS most often strikes between the ages of 20 and 40 and more often in women than in men.

In people with MS, the body's immune system launches an attack against its own tissues, specifically a fatty substance called myelin that surrounds nerve fibers in the brain, spinal cord and optic nerves, where it acts as an insulator. Myelin allows for the speedy conduction of nerve impulses that convey information in the CNS. When myelin is damaged, the nerve fibers are no longer insulated and nerve impulses cannot be conducted efficiently. The location and extent of damaged myelin in the CNS determines the type, severity and duration of symptoms in MS.

Scientists do not know what causes MS, but the disease is characterized clinically by recurrent episodes of paralysis at all levels of the CNS. Research has shown that inflammation, loss of myelin and scar tissue that replaces injured nerve fibers in the CNS underlie these symptoms. Patchy inflammation in the white matter of the CNS historically is called plaque. In the inflammatory milieu of the plaque, the nerve fibers are stripped of their myelin.

In the study, the researchers used inbred mice that were immunized to develop a disease called chronic-relapsing EAE, which has many similarities to its human counterpart, MS, including relapses and recurrences of inflammatory destruction of myelin in optic nerves, brain and spinal cord. MMPI, when given to mice with chronic-relapsing EAE, significantly ameliorated the disease course and decreased the number of relapses. Analysis of spinal cord tissue from treated mice showed a striking reduction of scarring and a strong inhibition of myelin destruction.

The scientists also looked at the levels of three substances, called cytokines, playing a role in the autoimmune process damaging the CNS in MS: tumor necrosis factor-a (TNF-a), Fas-ligand (FasL) and interleukin-4 (IL-4). TNF-a and FasL are toxic to CNS myelin and to the myelin-producing brain cells called oligodendrocytes, which are a prime target of the immune attack in MS. IL-4 is considered to be a beneficial cytokine. MMPI treatment downregulated TNF-a and FasL and, surprisingly, increased the expression of IL-4 on specialized brain cells called glial cells.

To add impact to the conclusion of the mouse experiments for the treatment of MS, the authors used immune system cells called myelin autoaggressive T cells, which many scientists think play a role in MS. Liedtke and co-workers found that MMPI, when administered to such cultured human T cells, decreased the amount of TNF-a that was shed by the cells.

"With the combined impact of MMPI on human myelin autoaggressive T cells and on a powerful animal model for MS, we are looking at MMPIs as promising candidates for human clinical trials in MS, which have already been initiated," says Liedtke.

Liedtke's and Raine's co-authors on the paper are Barbara Cannella, Ph.D., and Richard J. Mazzaccaro, Ph.D., of AECOM; John M. Clements, Ph.D., Karen M. Miller, Ph.D., and Andrew J. Gearing, Ph.D., of British Biotechnology Pharmaceuticals Ltd.; and Kai W. Wucherpfennig, M.D., Ph.D., of Harvard Medical School.

The study was supported by grants to Raine from the U.S. Department of Health and Human Services, from the National Multiple Sclerosis Society (NMSS) and from the Gladstein Foundation. Liedtke was supported by a Feodor Lynen Fellowship award of the Alexander von Humboldt Foundation (Bonn, Germany) and Wucherpfennig was supported by a Harry Weaver Neuroscience Scholarship award of the NMSS.

Rockefeller began in 1901 as The Rockefeller Institute for Medical Research, the first U.S. biomedical research center. Rockefeller faculty members have made significant achievements, including the discovery that DNA is the carrier of genetic information and the launching of the scientific field of modern cell biology. The university has ties to 19 Nobel laureates, including the president, Torsten N. Wiesel, M.D., who received the prize in 1981. The university recently created six centers to foster collaborations among scientists to pursue investigations of Alzheimer's disease, of biochemistry and structural biology, of human genetics, of immunology and immune diseases, of sensory neurosciences and of the links between physics and biology.
-end-


Rockefeller University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.