New marker substance for cancer cells

July 04, 2013

Imaging techniques in cancer medicine provide far more than merely information on the scale and location of cancerous ulcers. There are modern methods that additionally characterise the tumour cells precisely, for instance by specific molecules they carry on their surface. Such additional information gives doctors key clues as to the precise cancer type and enables them to predict the probability that a patient will respond to a particular form of therapy.

Positron emission tomography (PET) is one such technique. Unlike with computed tomography or magnetic resonance imaging, PET does not render the body tissue visible, but rather radioactively marked molecules - known as tracers - inside the body, which are injected into the patient's bloodstream prior to the scan. Based on the lock-and-key principle, they adhere to certain molecules on the cell surface. Through the radioactive radiation, specifically cell tissue with these surface molecules is visible on the PET scan.

Researchers from ETH Zurich, the Paul Scherrer Institute and company Merck Millipore have now developed a new tracer for PET that binds to the folic acid receptor. This receptor is interesting because it accumulates on the cell surface in many cancer types. The PET scan provides information on the size and location of the tumour and the density of the folic acid receptors on the cell surface.

World's first clinical trial

The team of researchers headed by Simon Ametamey and Roger Schibli, both professors at the Institute of Pharmaceutical Sciences at ETH Zurich, have successfully tested their new substance in mice with cervical tumours. In a next step, the scientists now want to study whether the substance proves equally successful in humans. A pilot study on patients with ovarian, lung and intestinal cancer in several Swiss hospitals, including University Hospital Zurich, is in preparation. It will be the first clinical trial on a folic acid receptor marker for PET on patients.

If the substance proves suitable, the scientists would like to use it to predict the efficacy of chemotherapy in the future. They primarily have a new generation of cancer medication in mind that also binds to the folic acid receptor, which then channels the drug into the cancer cells, where it unfolds its therapeutic effect.

Personalised medicine

"Our PET tracer provides important additional information for this targeted therapeutic approach with cytotoxic substances," says Ametamey. After all, one difficulty with the new form of therapy is that not in all patients the cancer cells carry the folic acid receptor. In the case of ovarian, cervical and brain tumours, it is nine out of ten patients, with lung cancer around three quarters and with breast cancer about half. In patients without the receptor, the novel chemotherapy is ineffective.

With the aid of the new technique, it could be possible to predict whether a patient will respond to such treatment. Patients whose tumours do not have any folic acid receptors could be spared this therapy and its side effects. Moreover, physicians can use the new PET tracer to better monitor the progress of the therapy and study whether the tumour is shrinking.

Making inflammations visible

However, the new PET tracer is not just interesting for cancer medicine, but also just the ticket for displaying inflammatory responses in the body. After all, the folic acid receptor occurs also at the surface of certain cells of the immune system, the macrophages, and only if these are in a so-called activated state during an inflammatory response. The new marker substance could thus be used to display inflammatory diseases such as arteriosclerosis, arthritis or inflammatory bowel diseases with PET.

Moreover, a third area of application is also imaginable for the substance: medication development. "If we've got a method to detect chronic inflammatory responses in a non-invasive way, we can test the efficacy of anti-inflammatory medication more effectively," explains Schibli.

Only lab in Switzerland

The work with the radioactive PET marker substance poses special challenges in terms of lab infrastructure. ETH Zurich is home to the only lab in Switzerland to possess the facilities for the development of new radioactive substances and at the same time meet the demands to produce such substances for use in clinical trials on humans. The key is to manufacture the molecules at high purity levels and in sufficient amounts. PET tracers cannot be stored since the radioactive isotope Fluorine-18 used in the study degrades rapidly (it has a half-life of less than two hours).

Consequently, the researchers developed a non-radioactive precursor molecule to which they can add the radioactive Fluorine-18 at the last minute. The end product has to be transported to the patient immediately after production and quality control.
-end-
Literature reference

Betzel T, Müller C, Groehn V, Müller A, Reber J, Fischer CR, Krämer SD, Schibli R, Ametamey SM: Radiosynthesis and Preclinical Evaluation of 3'-Aza-2'-[18F]fluorofolic Acid: A Novel PET Radiotracer for Folate Receptor Targeting. Bioconjugate Chemistry, 2013, 24, 205-214. DOI: 10.1021/bc300483a [http://dx.doi.org/10.1021/bc300483a]

ETH Zurich

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.