Spider webs more effective at ensnaring charged insects

July 04, 2013

Flapping insects build up an electrical charge that may make them more easily snared by spider webs, according to a new study by University of California, Berkeley, biologists.

The positive charge on an insect such as a bee or fly attracts the web, which is normally negatively or neutrally charged, increasing the chances that an insect flying by will contact and stick to the web, said UC Berkeley post-doctoral fellow Victor Manuel Ortega-Jimenez.

He also suspects that light flexible spider silk, the kind used for make the spirals on top of the stiffer silk that forms the spokes of a web, may have developed because it more easily deforms in the wind and electrostatic charges to aid prey capture.

"Electrostatic charges are everywhere, and we propose that this may have driven the evolution of specialized webs," he said.

Ortega-Jimenez, who normally studies hummingbird flight, became interested in spider webs while playing with his four-year-old daughter.

"I was playing with my daughter's magic wand, a toy that produces an electrostatic charge, and I noticed that the positive charge attracted spider webs," he said. "I then realized that if an insect is positively charged too it could perhaps attract an oppositely charged spider web to affect the capture success of the spider web."

In fact, insects easily develop several hundred volts of positive charge from the friction of wings against air molecules or by contacting a charged surface. This is small compared to the several thousand volts we develop when walking across a rug and which gives us a shock when we touch a doorknob, but is sufficient to allow a bee to electrostatically draw pollen off a flower before landing.

To test his spider web hypothesis, Ortega-Jimenez sought out cross-spider (Araneus diadematus) webs along streams in Berkeley and brought them into the lab. He then used an electrostatic generator to charge up dead insects - aphids, fruit flies, green-bottle flies, and honey bees - and drop them into a neutral, grounded web.

"Using a high speed camera, you can clearly see the spider web is deforming and touching the insect before it reaches the web," he said. Insects without a charge did not do this. "You would expect that if the web is charged negatively, the attraction would increase."

Ortega-Jimenez plans to conduct further tests at UC Berkeley to determine whether this effect occurs in the wild, and find out whether static charges on webs attract more dirt and pollen and thus are a major reason orb web weavers rebuild them daily.
-end-
Ortega-Jimenez, who is currently finishing a post-doctoral fellowship at the University of North Carolina, Chapel Hill, before returning in September to UC Berkeley, and Robert Dudley, UC Berkeley professor of integrative biology, report their findings in the July 4 issue of Scientific Reports, an open, online rapid publication from the publishers of the journal Nature.

University of California - Berkeley

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.