Boat owners can fight barnacles with new eco-friendly method

July 04, 2013

Barnacles can be found in all marine environments and are a major problem for both small boats and large ships. Barnacles accumulate on the hulls and can reduce the fuel economy of a vessel by up to 40 per cent, increasing CO2 emissions accordingly.

Barnacles penetrate the surface

While most marine organisms that attach themselves to hulls - for example mussels and algae - can easily be scraped off, barnacles literally grow into the surface and form dense calcium deposits underneath the paint.

The most common method used to prevent fouling is to mix the paint with a poisonous substance. The poison is then released slowly from the painted hull to discourage invaders, and eventually ends up in the water to the detriment of other marine organisms. This is how for example tributyltin oxide (TBTO), a biocide used in the 1980s and 1990s, led to a global environmental disaster. TBTO was banned worldwide after it was discovered that the use was making oysters and similar animals infertile.

About 90 per cent of the anti-fouling hull paints used today are based on copper oxide, causing large amounts of copper to be released into the seas and oceans.

'This type of environmental effect cannot be accepted in the long run,' says Pinori.

Digging their own grave in the paint

Now Pinori has found a new method. With the new method, the paint and the poison are modified so that the poison is kept inside the paint, minimising the release of it into the water. Instead, the barnacle's own ability to penetrate the paint is used. When the organisms attach to the surface, the poisoning begins.

'You can say that they dig their own grave in the paint,' says Pinori.

Zero emissions possible

The toxin used in the new type of paint is ivermectin - a molecule produced by the bacterium Streptomyces avermitilis. A good effect has been achieved with only one gram of ivermectin per litre of paint, or a concentration of only .1 per cent. The effect lasts for many years and can replace the copper currently used in hull paints. The research indicates that only very small amounts of the substance leach into the water.

'My research shows that the small amounts that are released are unrelated to the effectiveness of the method. This means that if we can eliminate the leaching completely, the effect will not be sacrificed. Zero emissions will be our next goal. We're looking forward to continuing the development of this method within the EU project LEAF, Low Emission Anti-Fouling. It's a three-year project that SP has been granted together with Professor Elwing's group at the University of Gothenburg and other international partners,' says Pinori.
-end-
Title of the doctoral thesis: Low Biocide Emission Antifouling Based on a Novel Route of Barnacle Intoxication

Link to the thesis: http://hdl.handle.net/2077/32814

Link to the project: http://www.leaf-antifouling.eu

Supervisor: Dr. Mattias Berglin, SP Chemistry, Materials and Surfaces, Borås, and the Department of Chemistry and Molecular Biology, University of Gothenburg, and Professor Hans Elwing at the University of Gothenburg.

Contact: Emiliano Pinori, Department of Chemistry and Molecular Biology, University of Gothenburg and SP, tel.: +46 (0)705 27 56 13, emiliano.pinori@sp.se

Photography: All photos by Mats Hulander, Department of Chemistry and Molecular Biology, University of Gothenburg

University of Gothenburg

Related Emissions Articles from Brightsurf:

Multinationals' supply chains account for a fifth of global emissions
A fifth of carbon dioxide emissions come from multinational companies' global supply chains, according to a new study led by UCL and Tianjin University that shows the scope of multinationals' influence on climate change.

A new way of modulating color emissions from transparent films
Transparent luminescent materials have several applications; but so far, few multicolor light-emitting solid transparent materials exist in which the color of emission is tunable.

Can sunlight convert emissions into useful materials?
A team of researchers at the USC Viterbi School of Engineering has designed a method to break CO2 apart and convert the greenhouse gas into useful materials like fuels or consumer products ranging from pharmaceuticals to polymers.

Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.

Tracking fossil fuel emissions with carbon-14
Researchers from NOAA and the University of Colorado have devised a breakthrough method for estimating national emissions of carbon dioxide from fossil fuels using ambient air samples and a well-known isotope of carbon that scientists have relied on for decades to date archaeological sites.

COVID-19 puts brakes on global emissions
Carbon dioxide emissions from fossil fuel sources reached a maximum daily decline of 17 per cent in April as a result of drastic decline in energy demand that have occurred during the COVID-19 pandemic.

Egregious emissions
Call them 'super polluters' -- the handful of industrial facilities that emit unusually high levels of toxic chemical pollution year after year.

Continued CO2 emissions will impair cognition
New CU Boulder research finds that an anticipated rise in carbon dioxide concentrations in our indoor living and working spaces by the year 2100 could lead to impaired human cognition.

Capturing CO2 from trucks and reducing their emissions by 90%
Researchers at EPFL have patented a new concept that could cut trucks' CO2 emissions by almost 90%.

Big trucks, little emissions
Researchers reveal a new integrated, cost-efficient way of converting ethanol for fuel blends that can reduce greenhouse gas emissions.

Read More: Emissions News and Emissions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.