White dwarf star throws light on possible variability of a constant of nature

July 04, 2013

SYDNEY: An international team led by the University of New South Wales has studied a distant star where gravity is more than 30,000 times greater than on Earth to test its controversial theory that one of the constants of Nature is not a constant.

Dr Julian Berengut and his colleagues used the Hubble Space Telescope to measure the strength of the electromagnetic force - known as alpha - on a white dwarf star.

Their results, which do not contradict the variable constant theory, are to be published in the journal Physical Review Letters. Dr Berengut, of the UNSW School of Physics, said the team's previous research on light from distant quasars suggests that alpha - known as the fine-structure constant - may vary across the universe.

"This idea that the laws of physics are different in different places in the cosmos is a huge claim, and needs to be backed up with solid evidence," he says.

"A white dwarf star was chosen for our study because it has been predicted that exotic, scalar energy fields could significant alter alpha in places where gravity is very strong."

"Scalar fields are forms of energy that often appear in theories of physics that seek to combine the Standard Model of particle physics with Einstein's general theory of relativity."

"By measuring the value of alpha near the white dwarf and comparing it with its value here and now in the laboratory we can indirectly probe whether these alpha-changing scalar fields actually exist."

White dwarfs are very dense stars near the ends of their lives. The researchers studied the light absorbed by nickel and iron ions in the atmosphere of a white dwarf called G191-B2B. The ions are kept above the surface by the star's strong radiation, despite the pull of its extremely strong gravitational field.

"This absorption spectrum allows us to determine the value of alpha with high accuracy. We found that any difference between the value of alpha in the strong gravitational field of the white dwarf and its value on Earth must be smaller than one part in ten thousand," Dr Berengut says.

"This means any scalar fields present in the star's atmosphere must only weakly affect the electromagnetic force." Dr Berengut said that more precise measurements of the iron and nickel ions on earth are needed to complement the high-precision astronomical data.

"Then we should be able to measure any change in alpha down to one part per million. That would help determine whether alpha is a true constant of Nature, or not."
-end-
The team includes Professor Victor Flambaum, Professor John Webb and Andrew Ong from UNSW, Professor John Barrow from the University of Cambridge, Professor Martin Barstow and Simon Preval from the University of Leicester and Jay Holberg from the University of Arizona.

Media contacts:

Dr Julian Berengut: +61 (2) 9385 7637, mobile +61 (0) 423 115 365 jcb@phys.unsw.edu.au

Professor John Webb: +61 (0) 414 011176 jkw@phys.unsw.edu.au

Professor John Barrow: +44 (0) 1223 766 696 jdb34@hermes.cam.ac.uk

Professor Martin Barstow: +44 7766 233 362 mab@leicester.ac.uk

UNSW Science media: Deborah Smith, +61 (2) 9385 7307, +61 (0) 478 492 060

University of New South Wales

Related Hubble Space Telescope Articles from Brightsurf:

Spitzer space telescope legacy chronicled in Nature Astronomy
A national team of scientists Thursday published in the journal Nature Astronomy two papers that provide an inventory of the major discoveries made possible thanks to Spitzer and offer guidance on where the next generation of explorers should point the James Webb Space Telescope (JWST) when it launches in October 2021.

Unveiling rogue planets with NASA's Roman Space Telescope
New simulations show that NASA's Nancy Grace Roman Space Telescope will be able to reveal myriad rogue planets - freely floating bodies that drift through our galaxy untethered to a star.

Hubble makes the first observation of a total lunar eclipse by a space telescope
Taking advantage of a total lunar eclipse, astronomers using the NASA/ESA Hubble Space Telescope have detected ozone in Earth's atmosphere.

Stunning space butterfly captured by ESO telescope
Resembling a butterfly with its symmetrical structure, beautiful colours, and intricate patterns, this striking bubble of gas -- known as NGC 2899 -- appears to float and flutter across the sky in this new picture from ESO's Very Large Telescope (VLT).

Hubble marks 30 years in space with tapestry of blazing starbirth
NASA is celebrating the Hubble Space Telescope's 30 years of unlocking the beauty and mystery of space by unveiling a stunning new portrait of a firestorm of starbirth in a neighboring galaxy.

CHEOPS space telescope ready for scientific operation
CHEOPS has reached its next milestone: Following extensive tests in Earth's orbit, some of which the mission team was forced to carry out from home due to the coronavirus crisis, the space telescope has been declared ready for science.

Scientists build a 'Hubble Space Telescope' to study multiple genome sequences
Scientists can now simultaneously compare 1.4 million genetic sequences, helping classify how species are related to each other at far larger scales than previously possible.

Kepler Space Telescope's first exoplanet candidate confirmed
An international team of astronomers announced the confirmation of the first exoplanet candidate identified by NASA's Kepler Mission.

Space telescope detects water in a number of asteroids
Using the infrared satellite AKARI, a Japanese research team has detected the existence of water in the form of hydrated minerals in a number of asteroids for the first time.

The Hubble Space Telescope discovers the most distant star ever observed
An international team, including researchers from the Instituto de Astrofísica de Canarias (IAC) and the University of La Laguna (ULL), participated in the discovery of a star at a distance of nine billion lightyears from Earth.

Read More: Hubble Space Telescope News and Hubble Space Telescope Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.