Nav: Home

Feeding the world by rewiring plant 'mouths'

July 04, 2016

Stanford, CA -- Plants have tiny pores on their leaves called stomata -- Greek for mouths--through which they take in carbon dioxide from the air and from which water evaporates. New work from the lab of Dominique Bergmann, honorary adjunct staff member at Carnegie's Department of Plant Biology and professor at Stanford University, reveals ways that the systems regulating the development of stomata in grasses could be harnessed to improve plant efficiency and agricultural yield.

More than 30 percent of all the carbon dioxide in the atmosphere passes through stomata each year, and in exchange, plant stomata release water vapor equivalent of twice the amount present in the whole atmosphere. As such, plants exert a tremendous push-and-pull influence on the global climate and are particularly attuned to climate change.

What's more, stomata have been found in fossils dating back 400 million years, and are features of nearly every land plant alive today, although they can take on different appearances in different kinds of plants. Most of what we know about how genes shape stomata comes from studies of one "model" plant, Arabidopsis, a relative of broccoli and cabbage, which is very different from the grasses studied here. It was a mystery whether all plants use the same genes as Arabidopsis to produce stomata, or whether all the different stomatal forms and patterns result from each plant using its own unique set of genetic blueprints.

New work published in Proceedings of the National Academy of Sciences by lead authors Michael Raissig and Emily Abrash features a collaboration born at Carnegie's Department of Plant Biology between Bergmann and John Vogel (now at the Department of Energy's Joint Genome Institute) who met as postdocs at Carnegie. This work focused on the stomata of grasses, a family that includes maize, rice, and wheat, and thus represents key species used for human food, animal feed, and for renewable fuel.

The decision to study stomata in grasses was made not just because these plants are economically and environmentally important, but because grasses show several unique innovations that make their stomata much more efficient in taking up carbon dioxide while limiting water loss. Grass stomata have a different shape -- a dumbbell -- instead of the kidney bean-shaped ones found in most plants, and grasses have their stomata all aligned in regimented rows along the leaf blade, as opposed to the more haphazard distribution on broad-leafed plants. Some scientists have speculated that the shape and distribution of stomata in grasses are the reason for their tremendous evolutionary success.

Using a variety of laboratory techniques, Bergmann's team was able to elucidate some parts of the regulatory systems that turn certain genes on and off, which determine how grasses control the number of stomata to make, where to put them, and how to generate their distinct shape. Surprisingly, these differences don't occur because grasses use unique stomata genes, but because they use the same genes as other plants in different ways. This can be thought of as similar circuits of components, but with different wiring, so different genes are in charge of others. This "rewiring" can partly explain how grasses form different stomata with superior physiology.

What is exciting about these findings is that "now we have a handle on the genes that comprise a universal toolkit for building stomata", Bergmann explained, "plants apparently use the same common parts, but the ways these parts function and interact with each other are different, which is both interesting from a discovery science perspective and could be harnessed to improve growth performance in grasses that humans use for food or fuel."
-end-
This work was supported by the Swiss National Science Foundation, the Life Science Research Foundation, a U.S. National Science Foundation fellowship, the Howard Hughes Medical Institute, and the U.S. Department of Energy Joint Genome Institute, supported by the Office of Science.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Genes Articles:

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.
Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.
New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.
Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.
How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.
Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.
The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.
Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.
New genes on 'deteriorating' Y chromosome
Decoding Y chromosomes is difficult even with latest sequencing technologies.
Newly revealed autism-related genes include genes involved in cancer
Researchers in Italy have applied a computational technique that accounts for how genes interact, to find new networks of related genes that may be involved in autism spectrum disorder.
More Genes News and Genes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.