Nav: Home

Study shows how genes affect immunity in response to pathogens

July 04, 2016

A study that is first in its kind and published in Nature Medicine today has looked at how far genetic factors control the immune cell response to pathogens in healthy individuals. A team investigated the response of immune cells from 200 healthy volunteers when stimulated with a comprehensive list of pathogens ex vivo (outside the human body), and has correlated these responses with 4 million genetic variants (SNPs). The study was performed by scientists from University Medical Centre Groningen, Radboud University Medical Centre (both in the Netherlands) and Harvard Medical School (Boston, USA). The paper appeared on 4th of July 2016.

We all encounter pathogens on a daily basis, but we don't all defend ourselves against bacteria or fungi, for example, in the same way. Some people experience mild symptoms, others may become violently ill or even die. 'We wanted to discover how much individual genetic differences determine this variable response', said Dr. Vinod Kumar, assistant professor of functional genomics and infectious diseases at University Medical Centre Groningen (UMCG) and one of the senior authors of the paper.

The study focused on the role of cytokines, small peptides used by immune cells as signals to guide their response to an infectious agent. Blood samples were obtained from 200 participants in the Human Functional Genomics Project, which was initiated by Professors Mihai Netea and Leo Joosten (Radboud UMC) and Prof. Cisca Wijmenga (UMCG). Immune cells were isolated from the blood and stimulated in the laboratory with ten different bacterial and fungal pathogens. The responses of eight different cytokines were measured after 24 hours and/or 7 days. Further quality filtering resulted in 62 different combinations.

Varied response

'We observed large differences in cytokine production between individuals', explained Kumar. 'Their responses were also specific to the different pathogens'. This suggests that cytokines contribute to the varied responses to pathogens, and that each infection triggers a specific cytokine response pathway. Previous studies on unstimulated immune cells had shown little variation between individuals.

Dr. Yang Li, another author on the study, explained: 'The key to our results is that we performed a large-scale study, using many pathogens and measuring different cytokines'. The next step was to investigate if the responses were under genetic control. In a subset of participants, they tested 4 million single nucleotide polymorphisms (SNPs).

This pinpointed six genomic regions that influence cytokine responses, suggesting that cytokine production is at least partly genetically determined. One of the strongest examples is a SNP that affects the expression of the GOLM1 gene, which is known to express strongly in response to viral infections. In this case, there was a strong correlation with the response to the fungus Candida albicans, which is responsible for thousands of deaths each year.

Proof-of-concept

'When a particular variant of the SNP was present, the production of the cytokine interleukin-6 was reduced', said Kumar. The result was verified in a cohort of patients with candidemia, in which the fungus is present in the blood. The candidemia correlated strongly with the same SNP and with low levels of interleukin-6 in these patients, showing that the presence of the genetic variant results in an inability to clear the pathogen.

'This study is a real proof-of-concept', says Li. 'We found a lot of variation in cytokine production upon stimulation, and showed that an important part of this variation is explained by a genetic component'. This opens the way for more applied studies that move towards personalized medicine. It might well be possible to find genetic markers that will predict the risk of infection in individuals. An understanding of the genetic mechanisms underlying these different susceptibilities could lead to new therapeutic approaches.

'And it's not just for infections', said Kumar: 'Immune diseases, for example inflammatory bowel disease, appear to be caused by an over-responsive immune system. So this work means we can learn more about the way infections trigger immune diseases.'
-end-
Article reference: Yang Li et al: Inter-individual variability and genetic influences on cytokine responses against bacterial and fungal pathogens. Nature Medicine 4 July 2016. DOI: 10.1038/nm.4139

Additional information:

More information on the Human Functional Genomics Project: http://www.humanfunctionalgenomics.org

More information about the groups involved in this study: UMCG Systems genetics group and the Genetics department

RadboudUMC

Harvard Medical School

University of Groningen

Related Immune Cells Articles:

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.
Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.
Arming the body's immune cells
Researchers at UC have discovered a previously unknown mechanism that could explain the reason behind decreased immune function in cancer patients and could be a new therapeutic target for immunotherapy for those with head and neck cancers.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
How the immune system becomes blind to cancer cells
Researchers have described the activation of a key protein used by tumor cells to stop the body's immune response.
What protects killer immune cells from harming themselves?
White blood cells, which release a toxic potion of proteins to kill cancerous and virus-infected cells, are protected from any harm by the physical properties of their cell envelopes, find scientists from UCL and the Peter MacCallum Cancer Centre in Melbourne.
How self-reactive immune cells are allowed to develop
A research team at Lund University in Sweden has found the mechanism that controls the growth of B1-cells in mice.
Identification of new populations of immune cells in the lungs
In an article published in Nature Communications, the Immunophysiology Laboratory of the GIGA Institute, headed by Prof.
More Immune Cells News and Immune Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.