Nav: Home

Evolutionary split up without geographic barriers

July 04, 2016

A fundamental question in evolutionary research is: is a geographic barrier dividing the original population into two genetically separated populations required for the origin of new species? Or is so-called sympatric speciation also possible - the evolutionary divergence of a population within the same geographical area? Only few examples of sympatric speciation are known worldwide, and even these are not without controversy. Evolutionary biologists in Konstanz now have completed the most extensive study of sympatric speciation so far. They used around 20,000 characteristics of 450 fish to document the parallel evolution of cichlid fish in two crater lakes, Apoyo and Xiloá, in Nicaragua. The research carried out by the team of biologists around Professor Axel Meyer and Dr Andreas Kautt found conclusive evidence for possible evolutionary mechanisms of sympatric speciation. At the same time, the researchers underpinned the empirical evidence that had resulted from Axel Meyer's previous study on the sympatric speciation of these cichlids, published in 2006 in the scientific journal Nature. The current research findings were published in PLOS Genetics on 30 June 2016.

The cichlid fish in the volcanic crater lakes Apoyo und Xiloá in Nicaragua are one of the extremely rare examples of sympatric speciation. In only approximately 800 generations - a period of around 1,000 to 1,500 years - the fish population here has evolved into four to five different species, although the fish had lived in the same lake during all that time. Evolutionary biologist Axel Meyer had already described this astonishing evolutionary phenomenon in 2006, in the scientific journal Nature. Together with Andreas Kautt, he has now decoded the genetic family tree of the fish populations in detail.

"Our data point to a second wave of colonisation immediately before the separation into two species took place," explains Andreas Kautt. A second group of the same cichlid species reached the crater lake. The biologists assume that this second colonisation renewed the genetic pool of the cichlids and tipped the scales for the separation process.

Three models for sympatric and alleged sympatric speciation are known in evolutionary research. The first model, the most "pure form" of sympatric speciation, describes the development of two species out of a joint population. In the second model, a species colonises a habitat in two or more waves, before they separate into two species. According to this scenario, a swarm is formed through several population waves of the same ancestry - entailing a freshening up of the genetic pool - before sympatric speciation takes place. "Our data indicate that this is the type of speciation that occurred in the crater lakes Apoyo und Xiloá. The second wave of colonisation was integrated into the genetic pool of the crater lake population before the evolutionary split up. The diverging development of the two species took place without geographic barriers," Andreas Kautt explains.

The third model, which is very hard to distinguish and critics often use as a reason for objection, describes only alleged sympatric speciation. This scenario is also based on a second population wave. However, it assumes that the first population of the crater lake had already developed further, before the second population wave arrived. When the two swarms from the same ancestry met, they had already been different species. This means that it would not be a genuine sympatric speciation, as geographic barriers played a role at the time of the divergence. The evolutionary biologist from Konstanz, however, could rule out this third scenario: the genetic family trees of the fish show that the separation into two species took place after the second population wave. This means that the geneticists have provided the empirical evidence for sympatric speciation in the Nicaraguan crater lakes Apoyo and Xiloá.

The research project was carried out in the context of Axel Meyer's ERC Advanced Grant "Comparative genomics of parallel evolution in repeated adaptive radiations". The European Research Council had awarded Axel Meyer this renowned science award in 2011 to study parallel evolution. Research at the Nicaraguan crater lakes will be intensified in the next few years. Among other things, the evolutionary biologists from Konstanz have planned to completely sequence the genomes of the fish populations.
Original publication: Kautt AF, Machado-Schiaffino G, Meyer A (2016) Multispecies Outcomes of Sympatric Speciation after Admixture with the Source Population in Two Radiations of Nicaraguan Crater Lake Cichlids. PLoS Genetics 12(6): e1006157. doi:10.1371/journal.pgen.1006157

Note to editors:

You can download photos here: Caption: Dr. Andreas Kautt and Dr. Gonzalo Machado-Schiaffino while fishing in Nicaragua. Caption: Traces of volcanic activity in the crater lake Xiloá. Caption: Crater lake Apoyo. Caption: Prof. Axel Meyer, PH.D., Professor of Zoology and Evolutionary Biology at the University of Konstanz.


University of Konstanz
Communications and Marketing
Phone: +49 7531 88-3603

University of Konstanz

Related Speciation Articles:

Study tracks genomic changes that reinforce darter speciation
When they share habitat, orangethroat and rainbow darters tend to avoid one another, even though they are closely related and can produce 'hybrid' offspring.
Pitt study: Sexual selection alone could spark formation of new species
Because of imprinted preferences, strawberry poison frog females mate more with similar colored males, and less with differently colored males.
Rapid evolution: New findings on its molecular mechanisms
Evolutionary biologists from Konstanz analyze the role of microRNAs in the evolution of new species.
Quantum dots capture speciation in sandplain fynbos on the West Coast of South Africa
With a tongue up to 7 cm long, the long-tongue fly Moegistorhynchus longirostris often battle to fly, especially in the wind.
Latitudinal gradient of plant phylogenetic diversity explained
The most discussed global pattern of species diversity along the latitudinal gradient has now an evolutionary explanation: museum vs cradle hypothesis broken into pieces.
Speciation: Birds of a feather...
Carrion crows and hooded crows are almost indistinguishable genetically, and hybrid offspring are fertile.
A mating war in diving beetles has stopped the evolution of species
In nature, males eager attempts to mate with females can be so extreme that they will harm females.
New islands, happy feet: Study reveals island formation a key driver of penguin speciation
Ever since Darwin first set foot on the Galapagos, evolutionary biologists have long known that the geographic isolation of archipelagos has helped spur the formation of new species.
Human mutation rate has slowed recently
Researchers from Aarhus University, Denmark, and Copenhagen Zoo have discovered that the human mutation rate is significantly slower than for our closest primate relatives.
DNA analyses show a dynamic coevolutionary relationship between birds and their feather mites
A genetic study uncovers that birds maintain a dynamic coevolutionary relationship with their feather mites.
More Speciation News and Speciation Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab