Evolutionary split up without geographic barriers

July 04, 2016

A fundamental question in evolutionary research is: is a geographic barrier dividing the original population into two genetically separated populations required for the origin of new species? Or is so-called sympatric speciation also possible - the evolutionary divergence of a population within the same geographical area? Only few examples of sympatric speciation are known worldwide, and even these are not without controversy. Evolutionary biologists in Konstanz now have completed the most extensive study of sympatric speciation so far. They used around 20,000 characteristics of 450 fish to document the parallel evolution of cichlid fish in two crater lakes, Apoyo and Xiloá, in Nicaragua. The research carried out by the team of biologists around Professor Axel Meyer and Dr Andreas Kautt found conclusive evidence for possible evolutionary mechanisms of sympatric speciation. At the same time, the researchers underpinned the empirical evidence that had resulted from Axel Meyer's previous study on the sympatric speciation of these cichlids, published in 2006 in the scientific journal Nature. The current research findings were published in PLOS Genetics on 30 June 2016.

The cichlid fish in the volcanic crater lakes Apoyo und Xiloá in Nicaragua are one of the extremely rare examples of sympatric speciation. In only approximately 800 generations - a period of around 1,000 to 1,500 years - the fish population here has evolved into four to five different species, although the fish had lived in the same lake during all that time. Evolutionary biologist Axel Meyer had already described this astonishing evolutionary phenomenon in 2006, in the scientific journal Nature. Together with Andreas Kautt, he has now decoded the genetic family tree of the fish populations in detail.

"Our data point to a second wave of colonisation immediately before the separation into two species took place," explains Andreas Kautt. A second group of the same cichlid species reached the crater lake. The biologists assume that this second colonisation renewed the genetic pool of the cichlids and tipped the scales for the separation process.

Three models for sympatric and alleged sympatric speciation are known in evolutionary research. The first model, the most "pure form" of sympatric speciation, describes the development of two species out of a joint population. In the second model, a species colonises a habitat in two or more waves, before they separate into two species. According to this scenario, a swarm is formed through several population waves of the same ancestry - entailing a freshening up of the genetic pool - before sympatric speciation takes place. "Our data indicate that this is the type of speciation that occurred in the crater lakes Apoyo und Xiloá. The second wave of colonisation was integrated into the genetic pool of the crater lake population before the evolutionary split up. The diverging development of the two species took place without geographic barriers," Andreas Kautt explains.

The third model, which is very hard to distinguish and critics often use as a reason for objection, describes only alleged sympatric speciation. This scenario is also based on a second population wave. However, it assumes that the first population of the crater lake had already developed further, before the second population wave arrived. When the two swarms from the same ancestry met, they had already been different species. This means that it would not be a genuine sympatric speciation, as geographic barriers played a role at the time of the divergence. The evolutionary biologist from Konstanz, however, could rule out this third scenario: the genetic family trees of the fish show that the separation into two species took place after the second population wave. This means that the geneticists have provided the empirical evidence for sympatric speciation in the Nicaraguan crater lakes Apoyo and Xiloá.

The research project was carried out in the context of Axel Meyer's ERC Advanced Grant "Comparative genomics of parallel evolution in repeated adaptive radiations". The European Research Council had awarded Axel Meyer this renowned science award in 2011 to study parallel evolution. Research at the Nicaraguan crater lakes will be intensified in the next few years. Among other things, the evolutionary biologists from Konstanz have planned to completely sequence the genomes of the fish populations.
Original publication: Kautt AF, Machado-Schiaffino G, Meyer A (2016) Multispecies Outcomes of Sympatric Speciation after Admixture with the Source Population in Two Radiations of Nicaraguan Crater Lake Cichlids. PLoS Genetics 12(6): e1006157. doi:10.1371/journal.pgen.1006157

Note to editors:

You can download photos here:

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2016/46/Fischfang-Managua-Uni-KN-2016.JPG Caption: Dr. Andreas Kautt and Dr. Gonzalo Machado-Schiaffino while fishing in Nicaragua.

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2016/46/Kratersee-Xiloa-Uni-KN-2016.JPG Caption: Traces of volcanic activity in the crater lake Xiloá.

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2016/46/Kratersee-Apoyo-Uni-KN-2016.JPG Caption: Crater lake Apoyo.

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2016/46/Axel-Meyer-Uni-KN-2016.jpg Caption: Prof. Axel Meyer, PH.D., Professor of Zoology and Evolutionary Biology at the University of Konstanz.


University of Konstanz
Communications and Marketing
Phone: +49 7531 88-3603
Email: kum@uni-konstanz.de

University of Konstanz

Related Speciation Articles from Brightsurf:

Genomic data 'catches corals in the act' of speciation and adaptation
A new study led by the University of Hawai'i at Mānoa revealed that diversity in Hawaiian corals is likely driven by co-evolution between the coral host, the algal symbiont, and the microbial community.

Engineering speciation events in insects may be used to control harmful pests
This research provides the foundations for scientists to be able to prevent genetically modified organisms from reproducing with wild organisms.

A changing mating signal may initiate speciation in populations of Drosophila mojavensis
When choosing a mate, females of different subspecies of Drosophila mojavensis recognize the right mating partners either mainly by their song or by their smell.

Chromosomal speciation in wild house mice
A new look into the genomes of natural populations of the common house mice by a team of researchers from the University of Konstanz, Harvard University and La Sapienza University of Rome suggests that large-scale chromosomal rearrangements play an important role in speciation.

Divergence in flowering time contributes reproductive isolation between wild rice species
This study chose a pair of wild rice species (Oryza rufipogon and O. nivara) as a unique system to investigate the between-species reproductive isolation based on artificial crossing experiment and the flowering census from the common garden experiment.

Extinction resistance, not speciation, shaped ecologically diverse modern marine fauna
Ecologically diverse clades came to dominate the modern oceans because they were better buffered against the successive mass extinctions events which reshaped marine animals over evolutionary time -- not because of their higher rates of speciation, according to a new study.

Study tracks genomic changes that reinforce darter speciation
When they share habitat, orangethroat and rainbow darters tend to avoid one another, even though they are closely related and can produce 'hybrid' offspring.

Pitt study: Sexual selection alone could spark formation of new species
Because of imprinted preferences, strawberry poison frog females mate more with similar colored males, and less with differently colored males.

Rapid evolution: New findings on its molecular mechanisms
Evolutionary biologists from Konstanz analyze the role of microRNAs in the evolution of new species.

Quantum dots capture speciation in sandplain fynbos on the West Coast of South Africa
With a tongue up to 7 cm long, the long-tongue fly Moegistorhynchus longirostris often battle to fly, especially in the wind.

Read More: Speciation News and Speciation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.