Scanning the surface of lithium titanate

July 04, 2017

Researchers at Tokyo Institute of Technology, Tohoku University and the University of Tokyo have applied advanced scanning methods to visualize the previously unexplored surface of a superconductor: lithium titanate (LiTi2O4).

LiTi2O4 is the only known example of a so-called spinel1 oxide superconductor. Its rarity makes LiTi2O4 of enormous interest to those studying the origins of superconductivity, as it has the highest superconducting transition temperature (of up to 13. 7 K) within this group of materials.

Although LiTi2O4 in bulk form has been studied for decades, little is known about its surfaces, owing to the difficulty of preparing suitable LiTi2O4 surfaces for further analysis.

Now, using a combination of experimental and theoretical methods, a team of researchers including Taro Hitosugi of Tokyo Tech and the Advanced Institute for Materials Research at Tohoku University, has obtained visual evidence of superconductivity on ultrathin LiTi2O4 films, marking a milestone in surface science.

Published in Nature Communications, the study began with the detection of an unexpected energy "gap," hinting at the existence of superconductivity at the surface. Furthermore, their investigations revealed that the surface superconductivity is in different states from that of the bulk interior. The researchers used two experimental methods to visualise this finding: pulsed laser deposition2 (PLD), a technique that has enabled the production of high-quality LiTi2O4 films under vacuum conditions; and low-temperature scanning tunnelling microscopy/spectroscopy (STM/STS), for precise imaging of the surfaces.

"Imaging the atoms for the first time was surprising, as it's usually very difficult to observe the spinel-oxide atoms," says Hitosugi. "We then wanted to know the exact atomic arrangement on the surface, and in order to do that, we compared theory and experiment."

So, to delve deeper into how the atoms are arranged, the team made theoretical calculations that led them to consider four types of surface cut from bulk LiTi2O4. By comparing these four types, the researchers found one - called the TiLi2-terminated surface -- that matched their experimental observations.

Hitosugi explains that "knowing the accurate arrangement of atoms is the most important thing," as this knowledge will help to advance understanding of superconductivity at its thinnest limit, two-dimensional superconductivity at the surface.

In addition to the superconducting properties, knowing the atomic arrangements could lead to unveiling the mechanisms behind lithium-ion battery operations. The understanding of electrode surfaces is an essential step for designing next-generation lithium-ion batteries with higher capacity, enhanced life cycles and fast charging capabilities, because lithium ions migrate across the electrode surfaces.

As the study provides new directions for interface research, Hitosugi plans to collaborate with Tokyo Tech colleagues now working on solid-state electrolytes, specifically to improve understanding of the electrode-electrolyte interface (EEI), one of the hottest topics in battery research.

"Many people are interested in solid-state batteries -- the future of lithium-ion batteries," he says. "Now that we know the surface atomic arrangement of this material, we can begin to simulate the operation of solid-state lithium batteries."

Technical terms:


1 Spinel: A descriptive term for minerals that crystallise in a cubic (isometric) arrangement


2 Pulsed laser deposition: A method used to vaporise the material of interest so that it can be deposited as a thin film on a substrate, which can then be studied under vacuum conditions
-end-


Tohoku University

Related Superconductivity Articles from Brightsurf:

New kind of superconductivity discovered
Superconductivity is a phenomenon where an electric circuit loses its resistance and becomes extremely efficient under certain conditions.

Room temperature superconductivity creeping toward possibility
The possibility of achieving room temperature superconductivity took a tiny step forward with a recent discovery by a team of Penn State physicists and materials scientists.

A 'breath of nothing' provides a new perspective on superconductivity
Zero electrical resistance at room temperature? A material with this property, i.e. a room temperature superconductor, could revolutionize power distribution.

New Princeton study takes superconductivity to the edge
The existence of superconducting currents, or supercurrents, along the exterior of a superconductor, has been surprisingly hard to find.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

How a magnet could help boost understanding of superconductivity
Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity.

New study explains why superconductivity takes place in graphene
Theoretical physicists take important step in development of high temperature superconductors.

Better studying superconductivity in single-layer graphene
A new study published in EPJ B demonstrates that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.

Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.

First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.

Read More: Superconductivity News and Superconductivity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.