UF researchers test drug that could cut orthodontic treatment time in half

July 05, 2005

GAINESVILLE, Fla. - In the first study of its kind, University of Florida researchers are testing the power of a natural human hormone to biochemically move teeth faster and less painfully during orthodontic treatment.

"Most of orthodontics has traditionally dealt with physics, the biomechanics of applying a force against a tooth to move it," said study investigator Timothy Wheeler, D.M.D., Ph.D., a professor and chairman of orthodontics at UF's College of Dentistry. "Ours is the first study to use a naturally occurring hormone, recombinant human relaxin, to biochemically augment tooth movement and retention."

Relaxin is best known as the hormone that helps women's pelvic ligaments stretch in preparation for giving birth. It does this by softening collagen and elastin in the tissues, loosening strong, cord-like fibers until they have the consistency of limp spaghetti noodles.

That ability prompted researchers to consider relaxin a possible way to accelerate tooth movement and prevent relapse, a condition where the tooth migrates back to its original position after braces are removed.

"You can imagine normal collagen and elastin fibers to be like rubber bands that attach to the tooth to hold it in place," said Wheeler. "Those tissue fibers resist the force of the orthodontic treatment applied to move the tooth, and, when that force is removed, say when the braces are taken off, the elasticity of the tissues springs the tooth back into position."

UF researchers will evaluate whether injecting relaxin into the gums will loosen the collagen and elastin fibers and reorganize them so teeth can move more freely into orthodontic alignment. Once the teeth have been moved, researchers will administer another injection of relaxin under the premise that it will further soften gum tissue fibers, preventing them from pulling teeth back into their original position.

The study will be the first of many to test the hormone as an orthodontic therapy, and it is hoped the drug could cut treatment time in half and eliminate the need for retainers after braces have been removed.

This may not help the more than 5 million Americans and Canadians the American Association of Orthodontists estimates currently wear braces, but if it's shown to work it could bring a sigh of relief from those anticipating future tooth-torqueing orthodontic treatment and the aching teeth and throbbing gums that often go along with it.

The patent for the drug, which received the green light from the Food and Drug Administration last April for testing in human subjects, is owned by BAS Medical, a California-based company. BAS Medical is the sponsor of the UF study, which will establish safety and proof of principle on 40 people before a series of multicenter studies could begin testing the drug on hundreds worldwide.

Researchers won't know which of the 40 subjects receive relaxin and which receive a placebo. One tooth in each subject will be targeted for movement, and, subjects will wear Invisalign braces for eight weeks to move the targeted tooth. At week eight, the aligners will be removed and the teeth evaluated for relapse every four weeks for six months. As a safety measure, the week four outcomes of the first 12 patients entered into the study will be evaluated before the remaining 28 begin treatment. All 40 subjects will have completed the protocol by early October.

Wheeler said researchers hope to determine whether the treatment could eliminate the need for patients to wear retainers to hold teeth in place after braces are removed. The issue of retention - a term used to indicate the tooth remains in the position to which it has been moved without relapse - is a crucial aspect of the study.

"Right now, retention is the biggest problem we have in orthodontics," Wheeler said. "I want to get completely away from retainers, which for most patients right now are a lifetime commitment."

When patients don't wear retainers as prescribed, teeth gradually relapse, nullifying years of orthodontic treatment and expense. It is this lack of patient compliance that frustrates orthodontists worldwide.

"If the results of this study demonstrate enhancement of the rate of orthodontic tooth movement and better stability after treatment, it could be an exciting new method of increasing treatment acceptability while decreasing the need for compliance," said Robert Boyd, D.D.S., a professor and chairman of orthodontics at the University of the Pacific School of Dentistry. "Finishing orthodontic treatment without the usual regimen of lifetime use of retainers would greatly enhance the effectiveness and efficiency of current orthodontic treatment."

An important goal of future studies is to determine dosage and timing of drug delivery as well as delivery methods other than injection.

"This is the first step orthodontics has taken to deal with the biologic control of tooth movement, and what the final product will be is hard to tell at this point. Obviously, we want to make it easily available, easily delivered and as pain-free as possible," Wheeler said. "This initial proof of principle trial will help us define how to accomplish that."
-end-


University of Florida

Related Collagen Articles from Brightsurf:

Catch and release: collagen-mediated control of PEDF availability
Extracellular ligand PEDF holds cell fate in its hands, inducing cell death or promoting survival depending on which host cell receptor it binds to.

Stretched beyond the limits
It's a common phenomenon we know from cracked sneakers and burst tyres: worn-out materials can cause anything from mild annoyance to fatal accidents.

Study shows biocell collagen ingestion reduced signs of UVB-induced photoaging
New research finds BioCell Collagen Ingestion to reduce signs of UVB-Induced photoaging, which accounts for a significant amount of visible skin damage.

Delivery of healthy donor cells key to correcting bone disorder, UConn researchers find
n the journal STEM CELLS, research group of Dr. Ivo Kalajzic, lead investigator and professor, presents a study with potential for new treatments to address the root cause of weak and brittle bones.

Collagen fibers encourage cell streaming through balancing act
Engineers from the McKelvey School of Engineering at Washington University have shown that the length of collagen fibers has a roll to play in the ability of normal cells to become invasive.

Study shows BioCell collagen can visibly reduce common signs of skin aging within 12 weeks
In one of the most substantial studies of a skin health supplement, BioCell Collagen®, was found to visibly reduce common signs of skin aging, including lines and wrinkles, within 12 weeks of daily use.

3D printing new parts for our broken hearts
Researchers have developed a 'FRESH' new method of 3D printing complex anatomical structures out of collagen -- a primary building block in many human tissues.

I see the pattern under your skin
By combining multiphoton imaging and biaxial tissue extension a research team from Japan found that collagen in the skin is organized in a mesh-like structure, and that elastic fibers -- the connective tissue found in skin -- follows the same orientation.

GW pilot study finds collagen to be effective in wound closure
Researchers in the George Washington University Department of Dermatology found that collagen powder is just as effective in managing skin biopsy wounds as primary closure with non-absorbable sutures.

Confining cell-killing treatments to tumors
Researchers at the Koch Institute for Integrative Cancer Research at MIT have developed a technique to prevent cytokines escaping once they have been injected into the tumor, by adding a Velcro-like protein that attaches itself to the tissue.

Read More: Collagen News and Collagen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.