University of Oregon chemists discover new way to fix nitrogen

July 05, 2005

EUGENE - University of Oregon chemists have produced ammonia from nitrogen at room temperature under normal atmospheric pressure, marking a significant step toward achieving one of chemistry's coveted goals.

A scientific article describing the method, which uses a simple compound of iron and hydrogen as the electron source in the "fixing" reaction, is available online and will be published in the July 27 issue of the Journal of the American Chemical Society.

The process devised by University of Oregon chemistry professor David Tyler and two graduate students, John Gilbertson and Nate Szymczak, was carried out in ether solutions. However, all steps but one also have been shown to work in water.

In the atmosphere, nitrogen gas is inert. However when nitrogen is converted to ammonia, it becomes available as a nitrogen source for plant growth - and as such is the fertilizer that drives the world's food supply. Industry produces ammonia using the century-old Haber-Bosch process, which directly combines nitrogen from the air with hydrogen under extremely high pressures and temperatures.

"For the first time, we've been able to use hydrogen as the source of electrons in the laboratory fixation of nitrogen," Tyler said. "Until now people have had to use other sources of electrons that are not relevant to the Haber-Bosch process. The only other case in which hydrogen was used successfully required higher temperature and exotic materials."

"In the eyes of chemists, the conversion of nitrogen to ammonia in water, using simple hydrogen at room temperature and pressure is the holy grail of nitrogen fixation," Tyler said. "The next challenge is figuring out how to carry out the complete cycle in water."

The University of Oregon method parallels the Haber-Bosch process very closely by using the electrons in the hydrogen molecule as the source of electrons required in the fixing reaction. "This is simpler than any other solution put forward to date," Tyler said. "Other procedures involve the use of relatively exotic electron sources or they require elevated temperatures to complete the synthesis."

And, while the new method "provides one solution to a fascinating, fundamental scientific challenge," Tyler emphasized that it could be decades - if ever - before it will bridge from the bench to cost-effective industry use.

Tyler said the new approach to synthesizing ammonia took five years to achieve and was inspired by earlier advances made by his graduate students, who found ways to make complexes soluble in water. He pointed out that Gilbertson and Szymczak both are funded by the university's National Science Foundation grant establishing research positions in Materials Science through the IGERT (Integrative Graduate Education and Research Traineeship) program.

"Solving problems of this magnitude takes a lot of student power and research dollars," Tyler said. "We're building on advances achieved during the last 20 years. A lot of hard thought went into this, not only by me and my students, but by other researchers who came before us."

Students chosen for the IGERT program receive opportunities to pursue interdisciplinary research, teach at other campuses, and do internships at National Labs and private companies. Gilbertson, who will complete his doctorate in chemistry in August, will begin a teaching postdoctoral position at Trinity University in San Antonio, Texas this fall. Szymczak currently has an internship at Pacific Northwest National Laboratories.
-end-


University of Oregon

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.