The new 'look' of superconductivity

July 05, 2007

AMES, Iowa - Like the surface motif of a bubble bath, the spatial distribution of a magnetic field penetrating a superconductor can exhibit an intricate, foam-like structure. Ruslan Prozorov at the U.S. Department of Energy's Ames Laboratory has observed these mystifying, two-dimensional equilibrium patterns in lead samples when the material is in its superconducting state, below 7.2 Kelvin, or minus 446.71 degrees Fahrenheit.

Through innovative research to relate the complex geometry of the equilibrium patterns to the macroscopic physical properties, such as magnetism, Prozorov has shown that the shape of the entire sample determines the pattern topology and overall magnetic behavior of the system - a significant finding that represents a major contribution to the field of superconductivity. "You can have the same volume and same mass, but if you just change the shape, you get a different type of response from the sample and a different type of geometry of the equilibrium field pattern," he said. "The discovery has reopened the whole field of equilibrium in type-I superconductors, which had gone dormant because it was considered closed."

Prozorov's discovery of the complex patterns in superconducting lead marks a noteworthy departure from the model first proposed by Russian physicist Lev Landau in the 1930s. Landau's model, which resembles a labyrinth or laminar pattern, has been the unchallenged standard in physics textbooks for 70 years.

But Prozorov questions the Landau model and maintains that it's impossible to deduce the equilibrium patterns of superconductors from global energy minimization - an established law of physics. "You can assume a certain geometry or pattern and work with it to find an optimal configuration, but that doesn't guarantee that the pattern you've assumed is the one that will turn out as the absolute minimum energy state in nature," he explained. Offering an example of the problem he sees with the Landau model, Prozorov said, "If you assume two patterns, you can calculate the total energy for each of them, and the one with the lowest energy may be the equilibrium pattern. Of course, you can't prove that there isn't another pattern that has even lower energy. You need to, in point of fact, observe the patterns and relate them to the actual measured physical properties."

Over the years there have been observations of equilibrium patterns in superconductors that differ from the labyrinth model proposed by Landau. However, the unusual patterns were considered to be defects or fluctuations due to imperfections in the material under study. No one bothered to relate the patterns they were observing to macroscopic properties. No one, that is, until Prozorov.

"It all started with an accidental finding," he said. I was trying to calibrate a thermometer in my magneto-optical cryostat, so I put in a very clean, stress-free piece of lead. This is an easy way to calibrate because lead becomes superconducting at 7.2 Kelvin, so when I looked at my sample and saw superconductivity, I knew my thermometer was correct."

But something else wasn't correct, at least not textbook correct. When Prozorov applied a sufficiently large magnetic field and looked at the lead sample in the magneto-optics system, he was surprised to see not the Landau labyrinth pattern but, rather, a pattern of two-dimensional tube shapes that he describes as looking like soap foam. "I was shocked because this was totally unexpected," he said. "So now the big question was which pattern represents equilibrium""

Prozorov's experiments showed that, depending on its purity and macroscopic physical shape, the sample under investigation displayed either the soap-foam pattern or the Landau laminar pattern. He knew that samples like disks or slabs that have two parallel surfaces also have a property known as a geometric barrier. Only those sample shapes exhibited the Landau pattern, and only when the magnetic field was reduced. However, Prozorov discovered that shapes without two flat surfaces, such as spheres, hemispheres, pyramids and cones, don't exhibit the Landau behavior. "We observed the foam, or tubular, phase in all of these sample shapes, and we don't have the Landau phase at all," he said. "So it's the foam phase that's the equilibrium state of the system. Most of the past studies were done on samples with flat surfaces, that's why people never observed this previously for decreasing magnetic field."

Emphasizing the difficulty involved in creating these less common sample shapes, Prozorov said, "To observe this soap-foam phenomenon, the samples must be very clean and defect-free with a uniformity of crystal structure. We spent a lot of time trying to make lead samples in the shapes of hemispheres, cones and pyramids and finally succeeded. Having access to the materials expertise available at Ames Laboratory has been a tremendous benefit in our efforts," he added.
-end-
The DOE Office of Science, Basic Energy Sciences Office and the National Science Foundation funded the above work on equilibrium patterns in superconductors.

Ames Laboratory, celebrating its 60th anniversary in 2007, is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources; the discovery, design and synthesis of new materials; high-speed computer design; and environmental cleanup and restoration.

DOE/Ames Laboratory

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.