NIEHS researchers identify enzyme critical in DNA replication

July 05, 2007

In this week's issue of Science, researchers from the National Institute of Environmental Health Sciences (NIEHS) and Umeå University in Sweden report an important discovery about a critical new role that an enzyme called DNA polymerase epsilon plays in replicating DNA in higher organisms such as yeast and perhaps even humans.

"The study places us one step closer to understanding the origins of genome instability that underlie certain environmental diseases in humans," said NIEHS Director David A. Schwartz, M.D. NIEHS is part of the National Institutes of Health.

The research was conducted by Zachary Pursell, Ph.D. and Thomas A. Kunkel, Ph.D., at NIEHS in collaboration with Erik Johansson, Ph.D. and colleagues at Umeå University.

The researchers used an innovative strategy to demonstrate that in bakers yeast, DNA polymerase epsilon has a primary role in replicating the leading strand of DNA. DNA polymerase epsilon was found to be a key determinant of genome stability and of cellular responses to DNA damage resulting from exposures to environmental stress.

The researchers built on fundamental discoveries on the structure and replication of DNA made by Nobel laureates James Watson, Francis Crick and Arthur Kornberg.

When Watson and Crick first described the structure of DNA in 1953, they pointed out that the two DNA strands, which are referred to as leading and lagging, pair with each other to form the now familiar double helix.

Shortly thereafter, Kornberg and colleagues discovered the first enzymes capable of replicating DNA, a process required to make new genomes for cell division. These enzymes, called DNA polymerases, were shown to copy the two DNA strands in only one of two possible directions. One strand of the double helix must be replicated first by a dedicated leading strand polymerase, followed slightly thereafter by replication of the lagging strand by a different polymerase.

In lower organisms like the E. coli bacteria that Kornberg studied, one DNA polymerase can accomplish both tasks. However, humans and related higher organisms, such as bakers yeast, are much more complicated. Recent discoveries, several of which emerged from the human genome project, indicate that the human genome encodes at least 15 DNA polymerases that can copy DNA. Several of these are thought to perform genomic replication, while others operate under special circumstances, such as the repair of DNA damage resulting from environmental exposures.

"Amazingly, more than a half century after Watson and Crick first described the DNA double helix, it had remained unclear which of these many DNA polymerases in higher organisms is actually responsible for first replicating the leading strand during nuclear genome duplication, " said Kunkel, author and Chief, Laboratory of Structural Biology at NIEHS.

Kunkel explained that the general strategy used in the study can now be applied to investigate other reactions that are critical for genome stability, including the identity of the lagging strand polymerase and the roles of more specialized DNA polymerases in copying damaged DNA.

According to Pursell, a researcher in the DNA Replication Fidelity Group at NIEHS and first author on the paper the study's findings advance the fundamental understanding of how the genomes of many higher organisms are replicated.
-end-
The National Institute of Environmental Health Sciences (NIEHS), a component of the National Institutes of Health, supports research to understand the effects of the environment on human health. For more information on environmental health topics, please visit our website at http://www.niehs.nih.gov/.

The National Institutes of Health (NIH) -- The Nation's Medical Research Agency -- includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical, and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Reference: Pursell ZF, Isoz I, Lundström EB, Johannsson E, Kunkel TA. Yeast DNA Polymerase ? Participates in Leading-Strand DNA Replication. Science, 2007.

NIH/National Institute of Environmental Health Sciences

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.