Salmon in hot water

July 05, 2010

Rearing juvenile salmon at the relatively high temperature of 16°C causes skeletal deformities in the fish. Researchers writing in the open access journal BMC Physiology investigated both the magnitude and mechanisms of this effect, which occurs when salmon farmers use warmed water to increase fish growth rates.

Harald Takle worked with a team of researchers from NOFIMA (the Norwegian Institute of Food, Fisheries and Aquaculture Research), Norway, to carry out the studies. He said, "The data presented here indicate that both production of bone and cartilage were disrupted when promoting fast growth using elevated temperature. It is very likely that higher temperatures result in the increased rate of deformities observed in the 16°C group".

The researchers reared 400 fish in 10°C water and another 400 at 16°C. The fish in the 16°C water grew faster, but 28% were found to show some signs of skeletal deformity, compared to 8% of the fish reared in the cooler tank. Takle said, "Our results strongly indicate that temperature induced fast growth is severely affecting gene transcription in osteoblasts and chondrocyte bone cells, leading to a change in the tissue structure and composition".

In a second related study, fish with vertebral deformities were studied in detail. Takle said, "The deformity process involves molecular regulation and cellular changes similar to those found in mammalian intervertebral disc degeneration".
-end-
Notes to Editors

1. Molecular pathology of vertebral deformities in hyperthermic Atlantic salmon (Salmo salar)
Elisabeth Ytteborg, Grete Baeverfjord, Jacob Torgersen, Kirsti Hjelde and Harald Takle
BMC Physiology (in press)

During embargo, article available here: http://www.biomedcentral.com/imedia/4540486142867515_article.pdf?random=441511
After the embargo, article available at the journal website: http://www.biomedcentral.com/bmcphysiol/

Morphological and molecular characterization of developing vertebral fusions using a teleost model
Elisabeth Ytteborg, Jacob Torgersen, Grete Baeverfjord and Harald Takle
BMC Physiology (in press)

During embargo, article available here: http://www.biomedcentral.com/imedia/1670753381361053_article.pdf?random=195351
After the embargo, article available at the journal website: http://www.biomedcentral.com/bmcphysiol/

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citations and URLs available on request at press@biomedcentral.com on the day of publication.

2. BMC Physiology is an open access journal publishing original peer-reviewed research articles in cellular, tissue-level, organismal, functional, and developmental aspects of physiological processes. BMC Physiology (ISSN 1472-6793) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, EMBASE, Scopus, Zoological Record, CABI and Google Scholar.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

BioMed Central

Related Fish Articles from Brightsurf:

Fish banks
Society will require more food in the coming years to feed a growing population, and seafood will likely make up a significant portion of it.

More than 'just a fish' story
For recreational fishing enthusiasts, the thrill of snagging their next catch comes with discovering what's hooked on the end of the line.

Fish evolution in action: Land fish forced to adapt after leap out of water
Many blennies - a remarkable family of fishes - evolved from an aquatic 'jack of all trades' to a 'master of one' upon the invasion of land, a new study led by UNSW scientists has shown.

How fish got onto land, and stayed there
Research on blennies, a family of fish that have repeatedly left the sea for land, suggests that being a 'jack of all trades' allows species to make the dramatic transition onto land but adapting into a 'master of one' allows them to stay there.

Fish feed foresight
As the world increasingly turns to aqua farming to feed its growing population, there's no better time than now to design an aquaculture system that is sustainable and efficient.

Robo-turtles in fish farms reduce fish stress
Robotic turtles used for salmon farm surveillance could help prevent fish escapes.

Heatwaves risky for fish
A world-first study using sophisticated genetic analysis techniques have found that some fish are better than others at coping with heatwaves.

A new use for museum fish specimens
This paper suggests using museum specimens to estimate the length-weight relationships of fish that are hard to find alive in their natural environment.

Reef fish caring for their young are taken advantage of by other fish
Among birds, the practice of laying eggs in other birds' nests is surprisingly common.

Anemones are friends to fish
Any port in a storm, any anemone for a small fish trying to avoid being a predator's dinner.

Read More: Fish News and Fish Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.