Olaparib shows promise, new concept for treating patients with cancer and BRCA gene mutations

July 05, 2010

The new drug olaparib has antitumour activity in carriers of the BRCA1 or BRCA2 gene mutations who have advanced ovarian or breast cancer, according to the findings of two proof-of-concept trials. Together with previous findings, these trials suggest that therapy for ovarian, breast, and possibly other cancers can be targeted on the basis of shared genetic defects, rather than organ of origin, conclude the Articles published online in the Lancet.

About 10% of women with ovarian cancer and up to 5% of women with breast cancer carry a mutation in the genes BRCA1 or BRCA2, which confers a high risk of development of breast and ovarian cancer. BRCA1 and BRCA2 are tumour-suppressor genes - key components of the homologous recombination repair pathway that repairs breaks in both strands of DNA. Up until now, knowledge of a BRCA mutation has not affected the selection of treatment for ovarian or breast cancer. In cancer models with BRCA1 or BRCA2 mutation, blockade of poly(ADP-ribose) polymerase (PARP), which is important to repair single-strand DNA breaks, synthetically kills the mutated cancer cells. The combination of two repair defects induces killing of the cells. These findings indicate that olaparib, a new, oral PARP inhibitor that kills BRCA-deficient cells, might be useful as a cancer treatment in patients with these mutations.

An international team led by Andrew Tutt (Breakthrough Breast Cancer Research Unit, King's College London School of Medicine, London, UK), conducted two proof-of-concept trials to assess the efficacy and safety of olaparib for treatment of advanced ovarian or breast cancer in patients with BRCA1 or BRCA2 mutations. In the first multicentre, phase 2 study, the team enrolled two sequential cohorts of adult women with confirmed genetic BRCA1 or BRCA2 mutations, and recurrent, measurable ovarian cancer. In the second multicentre, phase-2 study, adult women with confirmed BRCA1 or BRCA2 mutations and recurrent, advanced breast cancer were also assigned to two sequential cohorts. The first cohort in each study was given continuous oral olaparib at the maximum tolerated dose of 400 mg twice daily, and the second cohort was given continuous oral olaparib at 100 mg twice daily. The primary efficacy endpoint for both trials was objective response rate (ORR) and funding was from AstraZeneca.

Findings indicated better treatment response with the higher dose of olaparib compared with lower dose in both trials. In the ovarian cancer study, patients had already received a median of three previous chemotherapy regimens. ORR was 33% of 33 patients in the cohort assigned to olaparib 400 mg twice daily, and 13% of 24 in the cohort assigned to 100 mg twice daily. In the breast cancer study, patients had been given a median of three previous chemotherapy regimens. ORR was 41% of 27 patients in the cohort assigned to 400 mg twice daily, and six 22% of 27 in the cohort assigned to 100 mg twice daily. In both studies, olaparib was generally well tolerated, with most adverse events being low grade. Findings from both phase 2 studies provide positive proof of concept of the efficacy and tolerability of genetically targeted treatment with olaparib in BRCA-mutated advanced ovarian or breast cancer, note the authors.

In the report on ovarian cancer, first author M William Audeh (Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA) and colleagues explain: "The results of this phase 2 study show that the oral PARP inhibitor olaparib, given as monotherapy at a dose of 400 mg twice daily, has antitumour activity in heavily pretreated carriers of the BRCA1 or BRCA2 mutation who have recurrent ovarian cancer. Olaparib 100 mg twice daily also had clinical activity in this population, but this dose seems to be less efficacious than the 400 mg twice daily dose. However, the allocation of patients to these doses was not randomised and the olaparib 100 mg cohort had poorer prognostic features than did the 400 mg cohort."

The authors conclude that these findings support the hypothesis that BRCA-mutated tumours are susceptible to the synthetic killing induced by olaparib. "These data also support the identification of BRCA1 or BRCA2 mutations as a predictive biomarker for responsiveness to PARP inhibition," they note. Identification of other defects in the repair pathway that involves BRCA1 and BRCA2 "could predict similar responsiveness to PARP inhibition in a broad, genetically defined group of malignant diseases", they write.

In the report on breast cancer, first author Tutt and colleagues write: "The results of this phase 2 study show that the oral PARP inhibitor olaparib at 400 mg twice daily was active even in women with BRCA1 or BRCA2 mutations and advanced breast cancer that was resistant to conventional chemotherapy". These findings provide proof-of-concept for targeting the DNA repair pathway associated with BRCA1 or BRCA2 in patients with breast cancer, they explain.

The authors conclude that "the results of this study have shown that knowledge of cancer predisposition gene function can be translated from the laboratory to successfully test clinical treatment hypotheses for this rare group of women with hereditary breast cancer." The results of the study support further investigation of this approach that combines inhibition of a DNA repair target (such as with olaparib) with an inherent loss of function of specialised DNA repair (such as that due to BRCA mutations), the authors note. "Whether this approach might also show efficacy in a broader group of sporadic breast and ovarian cancers that might have inactivation of the homologous recombination repair pathway will be tested in future trials," the team explain.
Dr Andrew Tutt, Breakthrough Breast Cancer Research Unit, Guy's Hospital Campus, King's College London School of Medicine, London, UK T) Breakthrough Breast Cancer Press Office +44 (0) 207 025 0290 E) richardp@breakthrough.org.uk

Dr M William Audeh, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA T) Cedars-Sinai press office +1 310 423 7798 E) Simi.Singer@cshs.org

For full Articles, see: http://press.thelancet.com/olaparib.pdf


Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.