Research helps predict future impact of climate change

July 05, 2010

A new study, involving academics at the University of Sheffield, has accurately measured for the first time the current carbon cycles in the world. The research will enable scientists to make more accurate predictions concerning the impact of climate change in the future.

The paper, which will be published today (5 July 2010) in the journal Science, used large amounts of remote sensing, climate and carbon data from around the world to assess Gross Primary Production. This is the process which drives all plant growth, food production, eco-system services and fluxes of carbon dioxide in the atmosphere.

The new approach measures for the first term the quantity and uncertainty of this large annual flux in carbon dioxide, from the atmosphere into plants, at 123 plus or minus 8 billion tonnes per year. The research also highlighted that uptake of carbon dioxide is most pronounced in the planet's tropical forests, which are responsible for 34% of the inhalation of carbon dioxide from the atmosphere. In addition, savannahs account for 26% of the global uptake, although they also occupy almost twice as much surface area as tropical forests.

It was also found that precipitation plays a significant role in determining the gross global carbon dioxide uptake on more than 40% of vegetated lands, a discovery that stresses the importance of water availability for food security. According to this study, Earth System models can show great variation and some of them overestimate the influence of rainfall on global carbon dioxide uptake.

The researchers used data from FLUXNET, an international initiative established more than 10 years ago to monitor exchanges of carbon dioxide between the Earth's ecosystems and the atmosphere, along with remote sensing and climate data from around the world to calculate the spatial distribution of mean annual Gross Primary Production between 1998 and 2006.

The international collaboration involved Dr Mark Lomas and Professor Ian Woodward, from the University of Sheffield's Department of Animal and Plant Sciences, and was led by Christian Beer and Markus Reichstein from the Max Planck Institute for Biogeochemistry in Jena, Germany. The Sheffield-based researchers used a global vegetation model developed in the city to simulate global scale productivity. The model concurred with independent data and a key result was the global scale mapping of precipitation limitations of productivity.

Professor Ian Woodward said: "This model indicates that these limitations of productivity will become more intense with global warming, while at the same time indicating that some areas which are temperature limited at high latitudes will show increased productivity."
-end-


University of Sheffield

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.