Nav: Home

Bouncing droplets remove contaminants like pogo jumpers

July 05, 2016

WASHINGTON, D.C., July 5, 2016 - Scalpels that never need washing. Airplane wings that de-ice themselves. Windshields that readily repel raindrops. While the appeal of a self-cleaning, hydrophobic surface may be apparent, the extremely fragile nature of the nanostructures that give rise to the water-shedding surfaces greatly limit the durability and use of such objects.

To remedy this, researchers at Duke University in Durham, North Carolina and the University of British Columbia in Vancouver, Canada, are investigating the mechanisms of self-propulsion that occur when two droplets come together, catapulting themselves and any potential contaminants off the surface of interest. They ultimately hope to determine whether superhydrophobicity -- a surface that is impossible to wet -- is a necessary requirement for self-cleaning surfaces.

"The self-propelled catapulting process is somewhat analogous to pogo jumping," said Chuan-Hua Chen, an associate professor in the Department of Mechanical Engineering and Materials Science at Duke University. He and his colleagues present their work this week in Applied Physics Letters, from AIP Publishing.

When the droplets coalesce, or come together on a solid particle, they release energy - analogous to the release of biochemical energy of a human body on a pogo stick. The energy is then converted through the interaction between the oscillating liquid drop and the solid particle - analogous to the storage and conversion of energy by the spring mechanism of the pogo stick.

"In both cases, the catapulting is produced by internally generated energy, and the ultimate launching comes from the ground that supports the payload - the solid particle or the pogo stick," Chen said.

The researchers had previously worked with self-propelled jumping droplets triggered by drop coalescence on superhydrophobic surfaces. According to Chen, he and his colleagues initially encountered difficulties with demonstrating the same self-propelled motion without a superhydrophobic surface.

"The solution suddenly occurred to us while we were examining the drop coalescence process with numerical simulations by my student Fangjie Liu. The coalescence of two droplets on a particle can provide the source of energy to catapult the particle, much like pogo jumping," Chen said. "Guided by this insight, another student, Roger Chavez, inkjet-printed two droplets on a solid particle, which rests on a supporting substrate. As the droplets coalesce, the merged drop not only jumps away from the supporting substrate, but also carries the solid particle along with it."

"Since neither the solid particle nor the supporting substrate are superhydrophobic, we clearly demonstrated the feasibility of coalescence-induced self-cleaning without resorting to superhydrophobic surfaces," he concluded.

In addition to self-cleaning engineering systems, future work for Chen and his colleagues includes developing laboratory models for a related phenomenon, ballistospore launch triggered by drop coalescence on fungal spores, which has been observed on thousands of fungi species but has only been previously studied on live spores.
-end-
The article, "Capillary-inertial colloidal catapults upon drop coalescence" is authored by Roger L. Chavez, Fangjie Liu, James J. Feng, and Chuan-Hua Chen. It will appear in the journal Applied Physics Letters on July 5, 2016 (DOI: 10.1063/1.4955085). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/109/1/10.1063/1.4955085

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. http://apl.aip.org

American Institute of Physics

Related Superhydrophobic Articles:

Physicists shed new light on how liquids behave with other materials
Using a range of theoretical and simulation approaches, physicists from the University of Bristol have shown that liquids in contact with substrates can exhibit a finite number of classes of behavior and identify the important new ones.
Porcupinefish inspires sturdy superhydrophobic material
Nature has evolved a dazzling array of materials that help organisms thrive in diverse habitats.
Researchers design superhydrophobic 'nanoflower' for biomedical applications
Plant leaves have a natural superpower -- they're designed with water repelling characteristics.
'Sneezing' plants contribute to disease proliferation
'''The jumping droplets, at the rate of 100 or more an hour, are a violent expulsion of dew from the surface.
Making a splash is all in the angle
Making a splash depends on the angle of a liquid as it hits and moves along a surface, according to a new study from Queen Mary University of London.
Jumping drops get boost from gravity
'It turns out that surface tension and gravity work far better together than either works on its own.'
Harvesting water energy using slippery surfaces
Inspired by natural pitcher plant surface that exhibits a peculiar slippery property, a novel slippery lubricant-impregnated porous surface (SLIPS) based triboelectric nanogenerator (TENG), referred to as SLIPS-TENG, is developed to efficiently harvest energy from the most abundant, affordable resource, water.
Study explains how geckos gracefully gallop on water
Geckos are amazingly agile. In addition to running across land and up trees, the animals can prance across the surface of water.
Surfaces with controlled wettability to trap & identify molecules at trace concentrations
An international group of physicists from Far Eastern Federal University (FEFU), the Russian Academy of Sciences, and Swinburne University of Technology (Australia) developed a technology for trapping and chemical analysis of organic and non-organic molecules at ultra low concentrations.
Researchers simplify tiny structures' construction drip by drip
Princeton researchers explore methods of using carefully controlled droplets as a way to make soft, biomimetic structures.
More Superhydrophobic News and Superhydrophobic Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.