Nav: Home

Bouncing droplets remove contaminants like pogo jumpers

July 05, 2016

WASHINGTON, D.C., July 5, 2016 - Scalpels that never need washing. Airplane wings that de-ice themselves. Windshields that readily repel raindrops. While the appeal of a self-cleaning, hydrophobic surface may be apparent, the extremely fragile nature of the nanostructures that give rise to the water-shedding surfaces greatly limit the durability and use of such objects.

To remedy this, researchers at Duke University in Durham, North Carolina and the University of British Columbia in Vancouver, Canada, are investigating the mechanisms of self-propulsion that occur when two droplets come together, catapulting themselves and any potential contaminants off the surface of interest. They ultimately hope to determine whether superhydrophobicity -- a surface that is impossible to wet -- is a necessary requirement for self-cleaning surfaces.

"The self-propelled catapulting process is somewhat analogous to pogo jumping," said Chuan-Hua Chen, an associate professor in the Department of Mechanical Engineering and Materials Science at Duke University. He and his colleagues present their work this week in Applied Physics Letters, from AIP Publishing.

When the droplets coalesce, or come together on a solid particle, they release energy - analogous to the release of biochemical energy of a human body on a pogo stick. The energy is then converted through the interaction between the oscillating liquid drop and the solid particle - analogous to the storage and conversion of energy by the spring mechanism of the pogo stick.

"In both cases, the catapulting is produced by internally generated energy, and the ultimate launching comes from the ground that supports the payload - the solid particle or the pogo stick," Chen said.

The researchers had previously worked with self-propelled jumping droplets triggered by drop coalescence on superhydrophobic surfaces. According to Chen, he and his colleagues initially encountered difficulties with demonstrating the same self-propelled motion without a superhydrophobic surface.

"The solution suddenly occurred to us while we were examining the drop coalescence process with numerical simulations by my student Fangjie Liu. The coalescence of two droplets on a particle can provide the source of energy to catapult the particle, much like pogo jumping," Chen said. "Guided by this insight, another student, Roger Chavez, inkjet-printed two droplets on a solid particle, which rests on a supporting substrate. As the droplets coalesce, the merged drop not only jumps away from the supporting substrate, but also carries the solid particle along with it."

"Since neither the solid particle nor the supporting substrate are superhydrophobic, we clearly demonstrated the feasibility of coalescence-induced self-cleaning without resorting to superhydrophobic surfaces," he concluded.

In addition to self-cleaning engineering systems, future work for Chen and his colleagues includes developing laboratory models for a related phenomenon, ballistospore launch triggered by drop coalescence on fungal spores, which has been observed on thousands of fungi species but has only been previously studied on live spores.
The article, "Capillary-inertial colloidal catapults upon drop coalescence" is authored by Roger L. Chavez, Fangjie Liu, James J. Feng, and Chuan-Hua Chen. It will appear in the journal Applied Physics Letters on July 5, 2016 (DOI: 10.1063/1.4955085). After that date, it can be accessed at:


Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology.

American Institute of Physics

Related Superhydrophobic Articles:

It's kind of a drag
Imagine walking from one side of a swimming pool to the other.
New waterproofing and antifouling materials developed by Swansea Scientists
New materials have been developed by scientists in the Energy Safety Research Institute (ESRI) at Swansea University which is nontoxic, economical and shows promise to replace more expensive and hazardous materials used for waterproofing and antifouling/fogging.
Zap! Graphene is bad news for bacteria
Laser-induced graphene made from an inexpensive polymer is an effective anti-fouling material and, when charged, an excellent antibacterial surface.
Gas gives laser-induced graphene super properties
Introducing gas to fabrication changes the water-reacting properties of laser-induced graphene invented at Rice University, making it either superhydrophilic or superhydrophobic.
Water-repellant material sheds like a snake when damaged (video)
Imagine a raincoat that heals a scratch by shedding the part of the outer layer that's damaged.
A self-healing, water-repellant coating that's ultra durable
A self-healing, water-repellent, spray-on coating developed at the University of Michigan is hundreds of times more durable than its counterparts.
Jumping droplets extinguish unpredictable hotspots in electronics
The performance of electronic devices is constrained by their inability to evenly dissipate the waste heat they produce.
ORNL wins four FLC technology transfer awards
Oak Ridge National Laboratory researchers win four Federal Laboratory Consortium awards.
Environment-friendly hydrophobic coating made with salt particles
A team of researchers at Pohang University of Science and Technology (POSTECH) has found an elegant, cost-effective, and environmentally friendly method of applying a superhydrophobic layer to objects by using commercially available salt particles, polydimethylsiloxane (PDMS), and water.
First time physicists observed and quantified tiny nanoparticle crossing lipid membrane
First time physicists observed and quantified tiny gold nanoparticle crossing lipid membrane.

Related Superhydrophobic Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".