Nav: Home

Reconstruction of Grand Banks event sheds light on geohazard threats to seafloor infrastructure

July 05, 2018

As part of an international team, a researcher from the University of Liverpool reconstructed the 1929 Grand Banks underwater avalanche to better understand these common geohazards, which threaten critical seafloor infrastructure.

The 1929 Grand Banks underwater avalanche, which was triggered by an earthquake off the coast of Newfoundland, is the first and only underwater avalanche of this size to have been directly measured.

Despite being extremely common, little is known about underwater avalanches as they are exceptionally difficult to measure; inaccessible and destructive. However, they pose a major geohazard to seafloor infrastructure, such as telecommunication cables that carry more than 95% of global internet traffic, and oil and gas pipelines.

Dr Chris Stevenson, a lecturer in Quantitative Sedimentology at the University's School of Earth Sciences, was part of the team that revisited the area in order to reconstruct the avalanche.

The team mapped the bathymetry of the seafloor where the 1929 avalanche passed through and collected core samples of deposits that it left behind. They then combined this forensic evidence with the historic measurements of flow speed from the old cable breaks to reconstruct the properties of the avalanche.

Dr Stevenson, who was chief sedimentologist on the research cruise, said: "It is awe inspiring when you piece together how big and powerful this avalanche was: 230 m thick, which is about the height of Canary Wharf in London, moving at 40 mph, and highly concentrated with fist-sized boulders, gravel, sand and mud. It would not have been a good place to be at the time".

"Underwater avalanches are a bit of a mystery to scientists because they are really difficult to measure directly. What tends to happen is that avalanches destroy the measuring equipment you place in their path.

"The Grand Banks avalanche was the first, and remains the only, giant underwater avalanche that has been directly measured. At the time, it transformed how scientists viewed the seafloor and it's taken almost 90 years for us to revisit the area and confidently piece together its fundamental properties."

"This research cruise has enabled us to reconstruct the fundamental properties of this underwater avalanche which has implications for seafloor infrastructure. It can help provide engineers and modellers with the information they need to design expensive seafloor installations to withstand similar flows around the world, or build them out of harm's way.

"It also provides the first real-world example of a giant avalanche from which scientists can use to validate their theories and models."

Triggered by a 7.2 magnitude earthquake, the Grand Banks underwater avalanche was huge; generating a tsunami that killed 28 people and burying an area the size of the UK in half a metre of sand and mud. It was highly destructive and broke seafloor telecommunications cables along its path.

The exact location and timings of the cable breaks were recorded, meaning that the speed of the avalanche could be calculated.

The paper `Reconstructing the sediment concentration of a giant submarine gravity flow' is published in Nature Communications (doi: 10.1038/s41467-018-05042-6)
-end-


University of Liverpool

Related Seafloor Articles:

Crack in Pacific seafloor caused volcanic chain to go dormant
University of Houston geologists have discovered that 50 million years ago a chain of volcanoes between Northeast Asia and Russia were forced into a period of dormancy that lasted for 10 million years.
Ten years of icy data show the flow of heat from the Arctic seafloor
In addition to 10 years of data on the flow of heat in the Arctic ocean seafloor, the USGS and Geological Survey of Canada have published an analysis of that data using modern seismic data.
Istanbul: Seafloor study proves earthquake risk for the first time
Istanbul is located in close proximity to the North Anatolian fault, a boundary between two major tectonic plates where devastating earthquakes occur frequently.
Salish seafloor mapping identifies earthquake and tsunami risks
The central Salish Sea of the Pacific Northwest is bounded by two active fault zones that could trigger rockfalls and slumps of sediment that might lead to tsunamis, according to a presentation at the 2019 SSA Annual Meeting.
Variations in seafloor create freak ocean waves
Florida State University researchers have found that abrupt variations in the seafloor can cause dangerous ocean waves known as rogue or freak waves -- waves so catastrophic that they were once thought to be the figments of seafarers' imaginations.
Deep biosphere beneath the seafloor explored at American Geophysical Union fall meeting
The scientists are working to understand the nature of subseafloor microbial communities and whether these communities are unique.
'Turbidity currents' are not just currents, but involve movement of the seafloor itself
A new paper shows that turbidity currents in submarine canyons often involve large-scale movement of the seafloor.
Reconstruction of Grand Banks event sheds light on geohazard threats to seafloor infrastructure
As part of an international team, a researcher from the University of Liverpool reconstructed the 1929 Grand Banks underwater avalanche to better understand these common geohazards, which threaten critical seafloor infrastructure.
Cold production of new seafloor
Magma steadily emerges between oceanic plates. It pushes the plates apart, builds large underwater mountains and forms new seafloor.
Reversal of fortunes
Scientists have discovered that the seafloor from the Mississippi River Delta to the Gulf of Mexico is eroding like the land loss that is occurring on the Louisiana coast.
More Seafloor News and Seafloor Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.