Nav: Home

Spiders go ballooning on electric fields

July 05, 2018

The aerodynamic capabilities of spiders have intrigued scientists for hundreds of years. Charles Darwin himself mused over how hundreds of the creatures managed to alight on the Beagle on a calm day out at sea and later take-off from the ship with great speeds on windless day.

Scientists have attributed the flying behaviour of these wingless arthropods to 'ballooning', where spiders can be carried thousands of miles by releasing trails of silk that propel them up and out on the wind.

However, the fact that ballooning has been observed when there is no wind to speak of, when skies are overcast and even in rainy conditions, begs the question - how do spiders take off with low levels of aerodynamic drag?

Biologists from the University of Bristol believe they have found the answer.

"Many spiders balloon using multiple strands of silk that splay out in a fan-like shape, which suggests that there must be a repelling electrostatic force involved," explains lead researcher Dr Erica Morley, an expert in sensory biophysics.

"Current theories fail to predict patterns in spider ballooning using wind alone as the driver. Why is it that some days there are large numbers that take to the air, while other days no spiders will attempt to balloon at all? We wanted to find out whether there were other external forces as well as aerodynamic drag that could trigger ballooning and what sensory system they might use to detect this stimulus."

The solution to the mystery could lie in the Atmospheric Potential Gradient (APG), a global electric circuit that is always present in the atmosphere. APGs and the electric fields (e-fields) surrounding all matter can be detected by insects. For example, bumblebees can detect e-fields arising between themselves and flowers, and honeybees can use their charge to communicate with the hive.

Spider silk has long been known as an effective electric insulator, but until now, it wasn't known that spiders could detect and respond to e-fields in a similar way to bees.

In their study, the findings of which appear today in the journal Current Biology, Bristol's researchers exposed Linyphiid spiders to lab-controlled e-fields that were quantitatively equivalent to those found in the atmosphere. They noticed that switching the e-field on and off caused the spider to move upwards (on) or downwards (off), proving that spiders can become airborne in the absence of wind when subjected to electric fields.

Dr Morley added: "Previously, drag forces from wind or thermals were thought responsible for this mode of dispersal, but we show that electric fields, at strengths found in the atmosphere, can trigger ballooning and provide lift in the absence of any air movement. This means that electric fields as well as drag could provide the forces needed for spider ballooning dispersal in nature."

The findings have applications beyond the world of arthropods. Aerial dispersal is a crucial biological process for many caterpillars and spider-mites as well. An improved understanding of the mechanisms behind dispersal are important for global ecology as they can lead to better descriptions of population dynamics, species distributions and ecological resilience.

There is, however, more work to be done. Dr Morley said: "The next step will involve looking to see whether other animals also detect and use electric fields in ballooning. We also hope to carry out further investigations into the physical properties of ballooning silk and carry out ballooning studies in the field."
-end-


University of Bristol

Related Atmosphere Articles:

Primitive atmosphere discovered around 'Warm Neptune'
A pioneering new study uncovering the 'primitive atmosphere' surrounding a distant world could provide a pivotal breakthrough in the search to how planets form and develop in far-flung galaxies.
NASA's MAVEN reveals Mars has metal in its atmosphere
Mars has electrically charged metal atoms (ions) high in its atmosphere, according to new results from NASA's MAVEN spacecraft.
Northern oceans pumped CO2 into the atmosphere
The Norwegian Sea acted as CO2 source in the past.
Study opens new questions on how the atmosphere and oceans formed
A new study led by The Australian National University has found seawater cycles throughout the Earth's interior down to 2,900km, much deeper than previously thought, reopening questions about how the atmosphere and oceans formed.
How a moon slows the decay of Pluto's atmosphere
A new study from the Georgia Institute of Technology provides additional insight into relationship between Pluto and its moon, Charon, and how it affects the continuous stripping of Pluto's atmosphere by solar wind.
Fossil fuel formation: Key to atmosphere's oxygen?
For the development of animals, nothing -- with the exception of DNA -- may be more important than oxygen in the atmosphere.
Researchers dial in to 'thermostat' in Earth's upper atmosphere
A team led by the University of Colorado Boulder has found the mechanism behind the sudden onset of a 'natural thermostat' in Earth's upper atmosphere that dramatically cools the air after it has been heated by violent solar activity.
New biochar model scrubs CO2 from the atmosphere
New Cornell University research suggests an economically viable model to scrub carbon dioxide from the atmosphere to thwart global warming.
Venus-like exoplanet might have oxygen atmosphere, but not life
The distant planet GJ 1132b intrigued astronomers when it was discovered last year.
Middle atmosphere in sync with the ocean
In the late 20th century scientists observed a cooling at the transition between the troposphere and stratosphere at an altitude of about 15 kilometers.

Related Atmosphere Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".