Nav: Home

FSU research: Zika suppresses virus-fighting cells

July 05, 2018

TALLAHASSEE, Fla.-- More than two years after reports of skyrocketing Zika rates surfaced worldwide, questions still loom about this complicated virus.

Florida State University researchers are one step closer to finding answers.

In an article published today in the journal Stem Cell Reports, Professor of Biological Science Hengli Tang and his postdoctoral researcher Jianshe Lang take a deep dive into the differences between Zika and the Dengue virus.

On the surface, these viruses are very similar -- they are both delivered by mosquito and their genetic material is organized similarly. Yet, Zika is much more effective at penetrating the body's natural barriers against infections and leaves behind a trail of devastating effects on infected fetuses.

"We were really looking at one specific aspect," Tang said. "Does Zika virus get to more sites because of the ability to disseminate through the body better than Dengue?"

Tang and Lang found Zika has a unique ability to ferry the virus throughout the body when most viruses would be stopped.

It all has to do with a type of immune cell called a macrophage.

These warriors of the immune system basically engulf any type of foreign substance -- cellular debris, cancer cells, microbes -- that don't make the proper proteins consistent with healthy body cells. Macrophages typically float throughout the bloodstream and when a virus invades, they flock to the site of the disease to fight it. That's what happens when Dengue enters the body. It's not, however, what happens when Zika enters the body, researchers found.

Researchers grew macrophages from stem cells in Tang's lab. They then exposed these cells to either the Zika virus or the Dengue virus. The macrophages were then subjected to a test that measured the mobility of the infected cells.

In the Dengue experiment, the macrophages were essentially immobilized as they stayed in one spot to fight the infection. The ones infected with Zika virus, however, maintained their ability to migrate on glass slides.

That could be why the Zika virus is so effective, Tang said. In a mammal, the Zika-laden macrophages would have continued to float through the bloodstream.

"They're hitching a ride on macrophages to other parts of the body," Tang said.

Furthermore, Tang said, it appears that the Zika virus is actively suppressing the macrophage's ability to carry out its typical duties in fighting disease.

"Now the question is, with the increased ability to spread throughout the body, does Zika virus also use these infected macrophages to cross the placenta barrier, the blood-brain barrier and the testicular barrier?" Tang said. "If you understand how they cross these barriers, then you can develop more effective countermeasures to protect people."

Though Zika was discovered in 1947, little was known about how the virus worked when reports surfaced of a surge in cases worldwide in late 2015. Researchers and medical professionals rushed to learn as much as they could about the virus, but many questions remain as to how the virus actually functions. Tang and his colleagues at Johns Hopkins University were the first group of researchers to officially link Zika to microcephaly, a brain abnormality that occurs in developing fetuses.
-end-
This research is funded by the National Institutes of Health.

Researchers from the FSU College of Medicine, FSU's Center for Genomics and Personalized Medicine and Harvard University contributed to this study.

Florida State University

Related Macrophages Articles:

Identifying underlying causes of immune deficiencies that increase shingles risk
Varicella zoster virus can remain dormant for decades and reactivate to cause shingles.
Radiation therapy, macrophages improve efficacy of nanoparticle-delivered cancer therapy
Massachusetts General Hospital investigators report finding finding how appropriately timed radiation therapy can significantly improve the delivery of cancer nanomedicines by attracting macrophages to tumor blood vessels, which results in a transient 'burst' of nanoencapsulated drugs from capillaries into the tumor.
UK researchers identify macrophages as key factor for regeneration in mammals
The team's findings, published today in eLife, shed light on how immune cells might be harnessed to someday help stimulate tissue regeneration in humans.
Tumor-dwelling immune cells thwart cancer immunotherapy
Researchers have caught tumor-associated immune cells called macrophages in the act of stealing checkpoint inhibitor antibodies away from their intended T cell targets, and blocking this thievery led to improved therapeutic responses in tumor-bearing mice.
New chlamydia drug targets discovered using CRISPR and stem cells
Scientists at the Wellcome Trust Sanger Institute and their collaborators at the University of British Columbia have created an innovative technique for studying how chlamydia interacts with the human immune system.
Macrophages conduct electricity, help heart to beat
Macrophages have a previously unrecognized role in helping the mammalian heart beat in rhythm.
Macrophages shown to be essential to a healthy heart rhythm
A Massachusetts General Hospital-led research team has found that -- in addition to their immune system role -- macrophages are also essential to the healthy functioning of the heart, helping conduct the electric signals that coordinate the heartbeat.
UNC researchers identify a new HIV reservoir
A UNC research team has identified a new cell in the body where HIV persists despite treatment.
Silence is golden -- Suppressing host response to Ebola virus may help to control infection
The Ebola virus causes a severe, often fatal illness when it infects the human body.
Scientists discover how obesity stops 'guardian immune cells' from doing their job
Special immune cells -- ILCs -- cannot function properly once obesity is established.

Related Macrophages Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".