Nav: Home

Data-sharing website may speed the response to new illegal drugs

July 05, 2018

The drug overdose epidemic currently gripping the nation is so tenacious in part because it's being driven by fentanyl, a synthetic opioid that comes in many forms. Each form has a slightly different chemical structure, and clandestine chemists are constantly cooking up new ones. From a law-enforcement perspective, this makes fentanyl a moving target and very difficult to control.

To help with this situation, scientists at the National Institute of Standards and Technology (NIST), the German Federal Criminal Police Office (the Bundeskriminalamt, or BKA) and the U.S. Drug Enforcement Agency have launched a website where forensic chemists can share data on new drug variants, also called drug analogs. Described in Forensic Chemistry, the NPS Data Hub (NPS stands for Novel Psychoactive Substances) includes the chemical structures of drug analogs and their chemical signatures, which are the keys to identifying them in the lab.

Being able to identify drugs quickly is critical. "If people start overdosing and dying from a new drug analog, authorities need to identify it as quickly as possible," said Aaron Urbas, the NIST research chemist who led the project. "If you want to focus your resources effectively, you need to know what you're looking for."

The goal of the NPS Data Hub is to get drug identification data to forensic chemists more quickly. In addition to data on synthetic opioids such as fentanyl, the Data Hub is also intended to cover synthetic cannabinoids (aka synthetic marijuana), synthetic cathinones (aka bath salts), amphetamines and other dangerous drugs.


Underground chemists create new analogs in part to boost drug potency, with some fentanyl analogs being thousands of times stronger than heroin. This increases the risk to users, who may not know exactly what they're consuming. New analogs also allow the manufacturers to stay one step ahead of the law.

When drug evidence is seized, forensic chemists will often try to identify it using an instrument such as a mass spectrometer, which generates a unique barcode-like pattern--a sort of chemical signature--for the compound in question. They will then search law enforcement databases for a known compound with the same signature.

If the drug is new, the signature won't be recognized, and a much more complex analysis will be needed to identify the substance and determine its chemical structure. Few labs have that capability, so the drug may need to be sent to a more advanced facility. The whole process can take six months or more, including quality control to ensure the accuracy of the chemical structure and other data.

After that process is complete, the new drug and its chemical signature are added to law enforcement databases so that it can be identified more easily next time around. "

We want to shorten the time lag between discovery of a new drug and the distribution of the data needed to identify it," Urbas said.


The NPS Data Hub aims to shorten that time lag by making it easier for experts to collaborate. For instance, a chemist from one lab can analyze a new drug and upload a proposed chemical structure and supporting data to the Data Hub. Then a second chemist from a different lab can review the data and confirm the proposed structure or suggest a new one.

"These people have very rare expertise," said NIST senior policy advisor Jayne Morrow. "The Data Hub brings these experts together and provides a forum where they can discuss what they're seeing in real time. There haven't been great ways to do that before, and it's really needed."

Only labs with sufficient capabilities can propose and confirm chemical structures. But other labs, including smaller state and local labs, can use that data.

In addition to the collaboration mechanism, the NPS Data Hub differs from existing drug databases in two ways. First, many databases only include chemical signatures based on commonly used techniques such as mass spectrometry. The NPS Data Hub permits sharing of analytical data from any technique, including Nuclear Magnetic Resonance (NMR), Raman spectroscopy, and others that, though less common, can be useful for differentiating closely related compounds.

Second, in commonly used drug databases such as the one maintained by the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG), the information is highly vetted for quality control. That makes SWGDRUG data authoritative, but the vetting takes months to complete. The NPS Data Hub is meant to be less authoritative but updated more frequently.

"The Data Hub can contain both curated and preliminary data, so you wouldn't necessarily use it to produce courtroom evidence," Urbas said. "But for tracking the emergence of new drug analogs, even preliminary data can make a huge difference."
NPS Data Hub accounts are only available for users with suitable law enforcement, public health or research credentials. For more information, visit the NPS Data Hub page on the NIST website (

Paper: A. Urbas, T. Schoenberger, C. Corbett, K. Lippa, F. Rudolphi and W. Robien. NPS Data Hub: A web-based community driven analytical data repository for new psychoactive substances. Forensic Chemistry. Published online June 2018. DOI: 10.1016/j.forc.2018.05.003

National Institute of Standards and Technology (NIST)

Related Data Articles:

Discrimination, lack of diversity, & societal risks of data mining highlighted in big data
A special issue of Big Data presents a series of insightful articles that focus on Big Data and Social and Technical Trade-Offs.
Journal AAS publishes first data description paper: Data collection and sharing
AAS published its first data description paper on June 8, 2017.
73 percent of academics say access to research data helps them in their work; 34 percent do not publish their data
Combining results from bibliometric analyses, a global sample of researcher opinions and case-study interviews, a new report reveals that although the benefits of open research data are well known, in practice, confusion remains within the researcher community around when and how to share research data.
Designing new materials from 'small' data
A Northwestern and Los Alamos team developed a novel workflow combining machine learning and density functional theory calculations to create design guidelines for new materials that exhibit useful electronic properties, such as ferroelectricity and piezoelectricity.
Big data for the universe
Astronomers at Lomonosov Moscow State University in cooperation with their French colleagues and with the help of citizen scientists have released 'The Reference Catalog of galaxy SEDs,' which contains value-added information about 800,000 galaxies.
What to do with the data?
Rapid advances in computing constantly translate into new technologies in our everyday lives.
Why keep the raw data?
The increasingly popular subject of raw diffraction data deposition is examined in a Topical Review in IUCrJ.
Infrastructure data for everyone
How much electricity flows through the grid? When and where?
Finding patterns in corrupted data
A new 'robust' statistical method from MIT enables efficient model fitting with corrupted, high-dimensional data.
Big data for little creatures
A multi-disciplinary team of researchers at UC Riverside has received $3 million from the National Science Foundation Research Traineeship program to prepare the next generation of scientists and engineers who will learn how to exploit the power of big data to understand insects.

Related Data Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...