Nav: Home

Training in musical improvisation may teach your brain to think differently

July 05, 2018

John Coltrane and Jerry Garcia became improvising legends for their ability to mix musical elements on the fly. How the brain accomplishes such feats of creativity under pressure remains a mystery, though practice is increasingly thought to play a pivotal role.

Now, in a new study in the journal Psychology of Music, Columbia University researchers show that skilled improvisers are better than musicians with limited improvisational experience at distinguishing between chords that can be used interchangeably in a piece of music and chords that cannot. Further, when the improvisers recognized a chord unsuitable for substitution, their brains showed a pattern of electrical activity distinct from non-improvising musicians.

"It turns out that the degree to which we can predict how musicians respond to different types of musical substitution has nothing to do with how much they practice, but the way they practice," said the study's senior author, Paul Sajda, a biomedical engineer at Columbia Engineering and a member of Columbia's Data Science Institute. "Improvisational practice seems to reinforce how the brain represents different types of musical structures."

The researchers asked 40 musicians to listen to a series of chord progressions randomly interspersed with two types of chord variations: one from the same functional class (say, a similar chord with its notes inverted), and one from outside the class (say, a major chord juxtaposed against a minor chord). The improvisers, most of them trained in jazz, identified the oddball chords unsuitable for substitution faster and more accurately than the mostly classically-trained musicians with limited improvisational practice. How well they performed, the study found, was largely predicted by their level of improvisation experience.

Improvisation is hardly confined to music--it underlies much of daily life. Faced with a delayed train, you might decide to walk or take the bus; a missing ingredient, the closest alternative. With a flexible mindset, a creative solution is often at hand. With music, as with cooking, the trick is knowing the rules of substitution, says the study's lead author, Andrew Goldman, a postdoctoral researcher at Columbian.

He explains: Having run out of lemons, an improvising chef will reach for a lime knowing that citrus fruit will work better in the recipe than, say, a banana, much as an improvising musician knows that a chord with a similar harmonic function will work better than one with a different function. In Goldman's experiments, the improvisers were quick to differentiate between the musical equivalent of easy-to-substitute limes and hard-to-substitute bananas.

In a 2015 study of varsity baseball players, Sajda, the biomedical engineer, found that experts categorized pitches in much the same way. The experts were better than non-ball players at making split-second calls distinguishing a fast ball from say, a curve ball, and deciding whether to swing. This insight became the basis for deCervo, a tech startup founded by two former students of Sajda's who are now using brain-training exercises to improve batting performance.

In a related study with Barnard College dance professor Colleen Thomas, Goldman compared how people with varying levels of training in dance, improvisational dance, and Contact Improvisation--a form of improvised dance with partners--responded as they watched Thomas perform everyday actions and dance moves. In still unpublished results, researchers found that the dancers, despite not moving themselves, showed greater activity in the brain's motor cortex which controls movement. The effect was strongest in those with Contact Improvisation training.

Goldman was drawn to improvisation from his earliest piano lessons as a child growing up in southern California. "I would take the music I learned, transposing, changing the mode from major to minor, or mixing other musical elements together," he says. Later, as a composer and a concert pianist, Goldman's interest in the brain led him to the University of Cambridge for a Ph.D. in music cognition, and then to Columbia, where he just finished a three-year fellowship in the Presidential Scholars in Society and Neuroscience program.

When Goldman this spring put on Science! the Musical, a playful commentary about academic life that he wrote and performed in on piano, he was delighted when the lead singer embellished one song, "The Real World," with extra notes for emotional emphasis. "She had never done that in rehearsal, he says. "It worked very well."

This summer, Goldman heads to Western University in Ontario to continue studying the neuroscience of improvisation, a field that has expanded rapidly in recent years. Rather than focus on defining the subjective nature of improvisation, Goldman wants to go after questions with measurable answers. For example, how do different types of training influence musical perception? How do improvisers organize their knowledge of musical structures differently from non-improvisers?

George Lewis, a professor of composition and musicology at Columbia who co-edited the Oxford Handbook of Critical Improvisational Studies, says Goldman is off to a promising start.

"This work shows that far from being ineffable or mysterious, the practice of improvisation can be studied scientifically, yielding new knowledge about the brain and how we all get along in the world," said Lewis, who was not involved in the study. "This is important all by itself, and relevant to other work in cognitive psychology, neuroscience, and beyond."
-end-
The study's other author is Tyreek Jackson, a professor at St. John's University.

Study: Improvisation experience predicts how musicians categorize musical structures.

Columbia University

Related Brain Articles:

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
Is whole-brain radiation still best for brain metastases from small-cell lung cancer?
University of Colorado Cancer Center study compares outcomes of 5,752 small-cell lung cancer patients who received whole-brain radiation therapy (WBRT) with those of 200 patients who received stereotactic radiosurgery (SRS), finding that the median overall survival was actually longer with SRS (10.8 months with SRS versus 7.1 months with WBRT).
Atlas of brain blood vessels provides fresh clues to brain diseases
Even though diseases of the brain vasculature are some of the most common causes of death in the West, knowledge of these blood vessels is limited.
Brain sciences researcher pinpoints brain circuit that triggers fear relapse
Steve Maren, the Claude H. Everett Jr. '47 Chair of Liberal Arts professor in the Department of Psychological and Brain Sciences at Texas A&M University, and his Emotion and Memory Systems Laboratory (EMSL) have made a breakthrough discovery in the process of fear relapse.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.