Nav: Home

Stopping a tiny -- and deadly -- fly in its tracks

July 05, 2018

Sixty million people in sub-Saharan Africa live at risk of African sleeping sickness, a disease caused by parasites transmitted through the tsetse fly. In the late stage of the disease, when the parasite crosses the blood-brain barrier, the results are oftentimes fatal.

Brigham Young University chemistry professor Ken Christensen, students and collaborators at Clemson University have developed an innovative technique using biosensors to monitor the glucose level of Trypanasoma brucei parasites, which could in turn help develop treatments for the sleeping sickness.

"The unique thing about the T. brucei parasite is that it relies on host glucose for survival," said Christensen, whose study was recently published in top-ranked journal PLOS Neglected Tropical Diseases. "We know that if you could deprive the parasites in the blood stream of glucose, the parasite will die."

For the study, Christensen tested glucose levels to monitor the metabolism of the parasites using a genetically-encoded glucose biosensor. The biosensor combines three proteins: a cyan florescent protein, a glucose-binding protein, and a yellow florescent protein.

When the glucose-binding protein interacts with glucose in the parasite, the two fluorescent proteins move closer together. Christensen then uses the spectroscopic changes to monitor the fluorescence-intensity ratio between the yellow and cyan proteins. When the proteins are far apart, the blue light from the cyan fluorescent protein remains. But as the proteins move closer together, the blue light goes down and the yellow light from the yellow fluorescent protein increases.

This ratio is proportional to the glucose level in the parasite.

The results obtained from the biosensor provide new insights into the process through which parasites acquire and transport glucose for survival and provide a means to identify molecules that disrupt glucose levels in the parasite.

"In the long run, we hope that some of the glucose-disrupting molecules we are now identifying can be developed into therapeutics to treat African sleeping sickness," Christensen said.
-end-


Brigham Young University

Related Parasites Articles:

Deciphering plant immunity against parasites
Nematodes are a huge threat to agriculture since they parasitize important crops such as wheat, soybean, and banana; but plants can defend themselves.
Malaria parasites 'walk through walls' to infect humans
Researchers have identified proteins that enable deadly malaria parasites to 'walk through cell walls' -- a superpower that was revealed using the Institute's first insectary to grow human malaria parasites.
Scientists analyze dispersal of parasites by birds in the Americas
An international study investigates transmission of microorganisms that cause malaria and other diseases from migratory to resident avian species.
What's the buzz on bee parasites?
Published today in the open-access journal GigaScience is an article that presents the genome sequence and analysis of the honey bee parasitic mite T. mercedesae.
Major drug initiatives are best way to curb threat from parasites
Large-scale programmes to treat a life-threatening disease could improve the health of millions despite concerns about their long-term effects, a study suggests.
Promoting parasites
Hiroshima University scientists have identified a new species of parasite infecting an invasive freshwater fish on the subtropical island of Okinawa, Japan.
Sunflower pollen protects bees from parasites
Solitary mason bees specializing on sunflower pollen were not attacked by a common brood-parasitic wasp, which lays eggs in the nests, where its larvae kill bee eggs and eat their pollen provisions.
Trouble with parasites? Just migrate!
The researchers developed a model to explore whether combating infection could, in theory, be a potential benefit of migration.
Bird genomes contain 'fossils' of parasites that now infect humans
In rare instances, DNA is known to have jumped from one species to another.
Common pesticides kill amphibian parasites, study finds
A recent study by Jessica Hua, assistant professor of biological sciences at Binghamton University, and colleagues, explored the effects of six commonly used pesticides on two different populations of a widespread parasite of amphibians.

Related Parasites Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".