Nav: Home

Researchers upend conventional wisdom on thermal conductivity

July 05, 2018

Scientists have long known that diamond is the best material for conducting heat, but it has drawbacks: It is costly and is an electrical insulator; when paired with a semiconductor device, diamond expands at a different rate than the device does when it is heated.

Now a group of researchers from around the United States has reported that a crystal grown from two relatively common mineral elements - boron and arsenic - demonstrates far higher thermal conductivity than any other semiconductors and metals currently in use, including silicon, silicon carbide, copper and silver.

The discovery has the potential to address a range of technological challenges, including cooling electronic devices and nanodevices, said physicist Zhifeng Ren, a researcher with the Texas Center for Superconductivity at the University of Houston and one of the corresponding authors on the paper announcing the discovery, published Thursday, July 5, in the journal Science.

Thermal conductivity is measured in the unit of Wm-1K-1, used to denote the amount of heat that can pass through a material that is one meter long when the temperature difference from one side to the other is 1 degree Kelvin. The boron-arsenide crystal has a conductivity in excess of 1,000 at room temperature, the researchers reported.

Copper, by comparison, has a conductivity of about 400; diamond has a reported thermal conductivity of 2,000.

Previous reported efforts to synthesize boron-arsenide have yielded crystals measuring less than 500 micrometers - too small for useful application.

But the researchers now have reported growing crystals larger than 4 millimeters by 2 millimeters by 1 millimeter. A larger crystal could be produced by extending the growing time beyond the 14 days used for the experiment, they said.

Working with Tom Reinecke at the Naval Research Lab and Lucas Lindsay at Oak Ridge National Laboratory, David Broido, a theoretical physicist at Boston College and one of the authors of the paper, first proposed that the combination could yield a high thermal conductivity crystal, defying the conventional theory that ultrahigh lattice thermal conductivity could only occur in crystals composed of strongly bonded light elements, limited by anharmonic three-phonon processes.

This work confirms the theory, although it took a while. Several researchers involved in the current publication, along with Bing Lv, then a researcher at UH and now a faculty member at the University of Texas-Dallas, reported synthesizing a small crystal with a conductivity of about 200 in 2015.

Subsequent work in Ren's lab resulted in the larger, more highly conductive crystal reported in Science.

Broido called the confirmation an "example of the collaborative interplay between theory, materials synthesis and measurement. That this was accomplished and the theory confirmed is a testament to the persistence and skill of the synthesis and measurement teams."

Paul Ching-Wu Chu, T.L.L. Temple Chair of Science at UH and founding director of the Texas Center for Superconductivity, said combining boron with arsenic was a complex challenge.

"The mismatch between the physical properties of boron and arsenic makes the synthesis of boron arsenide extremely difficult and boron-arsenide single crystals almost impossible," he said.

The researchers created the crystal using chemical vapor transport, complicated by the fact that boron has a melting point of 2,076 degrees Centigrade, while arsenic changes directly from a solid to a gas.

Co-author Shuo Chen, assistant professor of physics at UH, said the crystal could be useful in cooling electronic devices.

"Heat dissipation is crucial for high power density electronics," she said. "Therefore, materials with high thermal conductivity are necessary to serve as substrates in high power density electronics."

The potential for a semiconductor with high thermal conductivity is immense, Chen said.

"Using femto-second laser pulses, we were able to measure the thermal conductivities of the boron-arsenide crystals," added Bai Song, a postdoctoral associate mentored by Professor Gang Chen in MIT's Department of Mechanical Engineering. "Such high thermal conductivity makes boron-arsenide attractive for microelectronic applications both as device materials and as heat sink materials."

The project was funded by the U.S. Navy's Multidisciplinary University Research Initiative, led by Li Shi, professor of mechanical engineering at the University of Texas at Austin.

Shi noted that team members at UT-Austin and MIT devised four different methods to validate boron arsenide as the first known semiconductor with a thermal conductivity as high as 1000 Wm-1 K-1 at room temperature.

The next step, he said, will be "to explore device technologies with the boron arsenide bulk crystals."
-end-
Additional researchers involved with the project include Fei Tian, Jingying Sun, Geethal Amila Gamage Udalamatta Gamage, Haoran Sun, Shuyuan Huyan, Hamidreza Ziyaee and Liangzi Deng, all of UH; Ke Chen, Te-Huan Liu and Zhiwei Ding, all of the Massachusetts Institute of Technology; Xi Chen, Sean Sullivan, Jaehyun Kim, Jianshi Zhou and Yuanyuan Zhou, all of UT-Austin; Navaneetha K. Ravichandran of Boston College; Miguel Goni and Aaron J. Schmidt of Boston University; and Yinchuan Lv and Pinshane Y. Huang of the University of Illinois Urbana-Champaign.

University of Houston

Related Arsenic Articles:

Poultry feed with arsenic more problematic than assumed?
Supplements containing arsenic have been banned in the European Union since 1999 and in North America since 2013.
Sponge bacterium found to encapsulate arsenic drawn from environment
A new Tel Aviv University study sheds light on a unique biological model of arsenic detoxification.
Urban pumping raises arsenic risk in Southeast Asia
Large-scale groundwater pumping is opening doors for dangerously high levels of arsenic to enter some of Southeast Asia's aquifers, with water now seeping in through riverbeds with arsenic concentrations more than 100 times the limits of safety, according to a new study from scientists at Columbia University's Lamont-Doherty Earth Observatory, MIT, and Hanoi University of Science.
Measuring arsenic in Bangladesh's rice crops
University of Massachusetts Amherst analytical chemist Julian Tyson and his student Ishtiaq 'Rafi' Rafiyu are partnering with Chemists Without Borders (CWB) to develop a low-cost, easy-to-use test kit to measure arsenic in Bangladesh's rice supply, offering consumers information on exposure.
Arsenic accumulates in the nuclei of plants' cells
Toxic arsenic initially accumulates in the nuclei of plants' cells.
An eco-friendly approach to reducing toxic arsenic in rice
A team of researchers at the University of Delaware has found that incorporating rice husk to soil can decrease toxic inorganic arsenic levels in rice grain by 25 to 50 percent without negatively affecting yield.
Parasites help brine shrimp cope with arsenic habitat contamination
Do parasites weaken their hosts' resilience to environmental stress? Not always, according to a study published on March 3 in PLOS Pathogens.
EARTH: Treated water that's too pure lets arsenic sneak in
In an effort to reduce water use in California, communities are turning to wastewater purification.
FIU scientists discover how arsenic builds up in plant seeds
Researchers from FIU's Herbert Wertheim College of Medicine Barry P.
Mystery of arsenic release into groundwater solved
Bacteria living in shallow sediment layers of permanently flooded wetlands in Asia drive arsenic release into water by feeding on freshly deposited plant material, a new study finds.

Related Arsenic Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".