Nav: Home

Detecting esophageal cancer cells

July 05, 2018

Researchers at the University of Texas at Arlington's College of Nursing and Health Innovation have developed a new nanoparticle-based platform for simultaneous imaging and treatment of esophageal cancer.

Together with colleagues from The Ohio State University, researchers manufactured polypeptide nanoparticles, which have near infrared fluorescence for better tissue imaging. They also modified the nanoparticles with tumor targeting properties and then loaded the nanoparticles with a chemotherapy drug.

"This is precision medicine," said Zui Pan, an associate professor of nursing and one of the corresponding authors of a paper on this nanoparticle, which is scheduled to be published in the journal Nature Communications this month. "It is harder to detect the esophageal cancer tumor. One common detection method is the use of an endoscopic probe, which shines a white light through your throat. But the problem is the tumor is embedded in the normal tissue and difficult to see. This will help detect the tumor and guide the surgeon to the area that is lit up and surgically remove it, or consider alternative therapies."

Esophageal cancer, the sixth leading cause of cancer death worldwide, is responsible for nearly 16,000 deaths in the United States each year, according to the American Cancer Society. It has few symptoms and is often diagnosed at a later stage. The five-year survival rate is less than 20 percent.

Pan, a leading esophageal cancer researcher, heads a lab that is largely devoted to the study and treatment of the disease. Other collaborators on this study include Mingjun Zhang, a professor in the Department of Biomedical Engineering at The Ohio State University, and his postdoctoral fellow Zhen Fan; Yan Chang, a post-doctoral fellow in Pan's lab and Chaochu Chi, a graduate student who is also in Pan's lab.

The researchers began developing this nanoparticle in 2015, Pan said. She added that in addition to making it easier to see the tumor, the nanoparticle has the ability to carry the chemotherapy drug to the site.

The nanoparticle is injected into the body, travels through the blood stream and accumulates in the tumor area because of its targeting properties, Pan said.

Pan said that in the past there have been some concerns about attempting to use nanoparticles detecting cancer cells because of the potential to introduce unanticipated side effects. It is important to note that this nanoparticle is both biocompatible and biodegradable.

"This is a significant milestone in cancer research, particularly esophageal cancer research," said Anne Bavier, dean of the College of Nursing and Health Innovation. "It is potentially transformative and further builds on the college and the university's efforts to advance health and the human condition."

This is Pan's second breakthrough in esophageal cancer research in the last 12 months. Last fall, she published a study in the FASEB Journal that showed that zinc can inhibit the growth of esophageal cancer cells.

"The long term goal of my research is to help prevent this tumor and to find better, safer and more targeted treatments for esophageal cancer," Pan said. "This is a big step toward that goal."
-end-


University of Texas at Arlington

Related Nanoparticles Articles:

Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
Study models new method to accelerate nanoparticles
In a new study, researchers at the University of Illinois and the Missouri University of Science and Technology modeled a method to manipulate nanoparticles as an alternative mode of propulsion for tiny spacecraft that require very small levels of thrust.
Actively swimming gold nanoparticles
Bacteria can actively move towards a nutrient source -- a phenomenon known as chemotaxis -- and they can move collectively in a process known as swarming.
Nanoparticles take a fantastic, magnetic voyage
MIT engineers have designed tiny robots that can help drug-delivery nanoparticles push their way out of the bloodstream and into a tumor or another disease site.
Quantum optical cooling of nanoparticles
One important requirement to see quantum effects is to remove all thermal energy from the particle motion, i.e. to cool it as close as possible to absolute zero temperature.
Nanoparticles help realize 'spintronic' devices
For the first time researchers have demonstrated a new way to perform functions essential to future computation three orders of magnitude faster than current commercial devices.
Directed evolution builds nanoparticles
Directed evolution is a powerful technique for engineering proteins. EPFL scientists now show that it can also be used to engineer synthetic nanoparticles as optical biosensors, which are used widely in biology, drug development, and even medical diagnostics such as real-time monitoring of glucose.
What happens to magnetic nanoparticles once in cells?
Although magnetic nanoparticles are being used more and more in cell imaging and tissue bioengineering, what happens to them within stem cells in the long term remained undocumented.
Watching nanoparticles
Stanford researchers retooled an electron microscope to work with visible light and gas flow, making it possible to watch a photochemical reaction as it swept across a nanoparticle the size of a single cold virus.
Nanoparticles to treat snakebites
Venomous snakebites affect 2.5 million people, and annually cause more than 100,000 deaths and leave 400,000 individuals with permanent physical and psychological trauma each year.
More Nanoparticles News and Nanoparticles Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab