A different slant of light

July 05, 2020

Special cells in giant clams shift the wavelength of light to protect them from UV radiation and increase the photosynthetic activity of their symbionts, shows research from KAUST--originally intended as a photonics investigation.

Like corals, giant clams are important players in reef ecosystems and live in symbiosis with photosynthetic Symbiodiniaceae algae. The clams also have special cells, known as iridocytes, that can manipulate light via layers of nanoreflectors within each cell. Earlier work has shown that these iridocytes scatter and reflect light to increase the photosynthetic efficiency of the Symbiodiniaceae algae.

Now, a team of researchers at the Red Sea Research Center and the Photonics Laboratory have discovered another way that iridocytes help the symbiont to photosynthesize. The researchers studied the morphology and optical characteristics of iridocytes in the giant clam Tridacna maxima and found that they absorb UV radiation and re-emit it as longer wavelength, photosynthetically useful light.

Ram Chandra Subedi, one of the study's authors, explains that the iridocytes contain alternating layers of high-refractive index guanine crystal and lower refractive index cytoplasm. Compressing and relaxing these layers enables the cell to tune its effect on light. As a result, "the guanine palettes not only reflect harmful UV radiation but also absorb it, and emit light at higher wavelengths which are safe and useful for photosynthesis," he explains.

This increases the amount of photosynthetically active radiation available to the algal symbiont and also helps protect both the clams and algae from UV radiation. This photoprotective effect enables giant calms to live in very shallow tropical waters where there is enough light for photosynthesis, but also potentially harmful UV radiation levels.

This may also explain the mantle colors of giant clams. The idea is that the vibrant colors of giant clams are not due to optical differences in the tissue, but rather differences in the distribution or abundance of symbionts relative to iridocytes in each individual. "It's just a hypothesis," explains lead author Susann Rossbach, "but it's the most reasonable explanation we have about why the clams have different colors." Whether or not the differences in color have functional consequences remains an open question.

Rossbach says that this was a curiosity-driven project to see if the iridocytes had optical properties that might be useful in photonics technologies. "It wasn't initially about answering a biology question, but in the end it explained a lot about this symbiosis and opened up new questions in biological photonics," she says. These findings have also led to new optoelectronic applications based on iridocytes, though they have not yet been published.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Algae Articles from Brightsurf:

Sprat, mollusks and algae: What a diet of the future might look like
Rethinking what we eat is essential if we hope to nourish ourselves sustainably and mind the climate.

Ocean algae get 'coup de grace' from viruses
Scientists have long believed that ocean viruses always quickly kill algae, but Rutgers-led research shows they live in harmony with algae and viruses provide a 'coup de grace' only when blooms of algae are already stressed and dying.

New science behind algae-based flip-flops
Sustainable flip-flops: A team of UC San Diego researchers has formulated polyurethane foams made from algae oil to meet commercial specifications for midsole shoes and the foot-bed of flip-flops.

Battling harmful algae blooms
In two separate studies, the University of Delaware's Kathryn Coyne is looking at why one species of algae has some strains that can cause fish kills and others that are non-toxic, while examining an algicidal bacterium found in Delaware's Inland Bays that could provide an environmentally-friendly approach to combatting algae blooms.

Algae as living biocatalysts for a green industry
Many substances that we use every day only work in the right 3D structure.

Algae in the oceans often steal genes from bacteria
Algae in the oceans often steal genes from bacteria to gain beneficial attributes, such as the ability to tolerate stressful environments or break down carbohydrates for food, according to a Rutgers co-authored study.

Algae team rosters could help ID 'super corals'
U.S. and Australian researchers have found a potential tool for identifying stress-tolerant ''super corals.'' In experiments that simulated climate change stress, researchers found corals that best survived had symbiotic algae communities with similar features.

Algae shown to improve gastrointestinal health
A green, single-celled organism called Chlamydomonas reinhardtii has served as a model species for topics spanning algae-based biofuels to plant evolution.

How do corals make the most of their symbiotic algae?
Corals depend on their symbiotic relationships with the algae that they host.

Algae as a resource: Chemical tricks from the sea
The chemical process by which bacteria break down algae into an energy source for the marine food chain, has been unknown - until now.

Read More: Algae News and Algae Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.