U of I scientist develops enzyme inhibitor that may slow cancer growth

July 06, 2006

Urbana -University of Illinois scientist Tim Garrow, in collaboration with Jiri Jiracek of the Czech Academy of Sciences, has applied for a provisional patent on a class of chemicals that has future therapeutic uses in medicine, specifically cancer treatment.

"These chemicals are potent inhibitors of an enzyme called betaine-homocysteine-S-methyltransferase (BHMT)," said Garrow.

"BHMT catalyzes a reaction that converts homocysteine to methionine. Because cancer cells require high levels of methionine, the ability to slow methionine's production could result in a treatment that will selectively inhibit cancer growth," the U of I professor of nutrition said.

Methionine, an essential amino acid, is required for several important biological processes, including synthesis of a compound that cancer cells require more than other cells. "When scientists restrict dietary methionine in animals with cancer, cancer cells are more acutely affected than others," Garrow said.

Many drugs work by inhibiting the action of an enzyme, including the statin drugs used to lower cholesterol, he added.

Garrow became interested in BHMT, which is abundant in the liver and present in lesser amounts in the kidneys, because elevated levels of blood homocysteine have been linked with a number of diseases, including vascular disease and thrombosis.

"Our lab has always been interested in BHMT's role in modulating plasma homocysteine, and we've engaged in some productive research collaborations. Martha Ludwig's lab at the University of Michigan solved BMHT's crystal structure.

"That breakthrough enabled us to look at the enzyme in three dimensions, which helped us design inhibitors for it. Several of those compounds were very effective in blocking binding of the enzyme's normal substrates," he said.

Injecting one of these BHMT inhibitors into the abdomens of mice resulted in changes in metabolite concentrations and elevated levels of homocysteine in the animals, showing that "our chemical inhibitor made its way from the abdominal cavity into the mouse's liver, where the inhibitor blocked the BHMT-catalyzed reaction as we thought it would."

Garrow believes BHMT inhibitors may work best in concert with other drugs. "In today's medicine, there's rarely one magic-bullet drug. We know that when you decrease the availability of methionine to cancer cells, another cancer drug called cisplatin works better. So a drug that inhibits BHMT, which decreases methionine availability, may well enhance the efficacy of another cancer treatment drug," he said.

Elevated levels of homocysteine could be a negative side effect of such therapy, but Garrow said the benefits of the drug would likely outweigh the risk. "A cancer patient would probably take the BMHT inhibitor for a limited time, while vascular disease--associated with high homocysteine levels--progresses over the course of a lifetime."

Garrow believes another therapeutic application for BHMT inhibitors could involve betaine, one of the enzyme's substrates.

"When you inhibit BHMT, you also block the utilization of betaine. Betaine not only donates a methyl group to homocysteine to form methionine, it also functions as an osmolyte, helping to regulate water content in the cells. We think the BHMT inhibitor could also be medically useful when there is unwanted diuresis or unwanted loss of water," he said.

Garrow's work with BHMT in mice was published in the June issue of the Journal of Nutrition. Co-authors include Michaela Collinsova, Jana Strakova, and Jiri Jiracek of the Academy of Sciences of the Czech Republic.
-end-
An article detailing the development of the BHMT inhibitor was published in the June issue of the Journal of Medicinal Chemistry. Other authors include Jiri Jiracek, Michaela Collinsova, Ivan Rosenberg, Milos Budesinsky, Eva Protivinska, and Hana Netusilova of the Academy of Sciences of the Czech Republic.

Garrow's funding was provided by the National Institutes of Health. He and Jiracek have just received an NIH grant specifically to continue their study of BHMT inhibitors.

University of Illinois at Urbana-Champaign

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.