Electronic 'crowd behavior' revealed in semiconductors

July 06, 2007

Like crowds of people, microscopic particles can act in concert under the right conditions. By exposing crowd behavior at the atomic scale, scientists discover new states and properties of matter. Now, ultrafast lasers have revealed a previously unseen type of collective electronic behavior in semiconductors, which may help in the design of optoelectronic devices. The work at JILA, a joint venture of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder, is described in a new paper in the Proceedings of the National Academy of Sciences.*

Design of optoelectronic devices, like the semiconductor diode lasers used in telecommunications, currently involves a lot of trial and error. A designer trying to use basic theory to calculate the characteristics of a new diode laser will be off by a significant amount because of subtle interactions in the semiconductor that could not be detected until recently.

To shed light on these interactions, the JILA team used a highly sensitive and increasingly popular method of manipulating laser light energy and phase (the point in time when a single light wave begins) to reveal the collective behavior of electronic particles that shift the phase of any deflected light. Their work is an adaptation of a technique that was developed years ago by other researchers to probe correlations between spinning nuclei as an indicator of molecular structure (and led to a Nobel prize).

In the latest JILA experiments, a sample made of thin layers of gallium arsenide was hit with a continuous series of three near-infrared laser pulses lasting just 100 femtoseconds each. Trillions of electronic structures called excitons were formed. Excitons are large, fluffy particles consisting of excited electrons and the "holes" they left behind as they jumped to higher-energy vibration patterns.

By tinkering with the laser tuning--the frequency and orientation of the electric field--and analyzing how the semiconductor altered the intensity and phase of the light, the researchers identified a subtle coupling between pairs of excitons with different energy levels, or electron masses. The experimental data matched advanced theoretical calculations of the electronic properties of semiconductors, confirming the importance of the collective exciton behavior--and dramatically demonstrated the superiority of those calculations over simpler models of semiconductor behavior (see graphic).

The work may help researchers better predict optoelectronic device characteristics, not only the magnitude of the emissions signals but also the phase, which is especially significant in optics.
-end-
Authors of the paper include a NIST collaborator and theorists from Philipps University in Marburg, Germany. The JILA research is supported in part by the U.S. Department of Energy.

* T. Zhang, I. Kuznetsova, T. Meier, X. Li, R.P. Mirin, P. Thomas and S.T. Cundiff. Polarization-dependent optical two-dimensional Fourier transform spectroscopy of semiconductors. Proceedings of the National Academy of Sciences. Scheduled to be posted on-line July 6.

National Institute of Standards and Technology (NIST)

Related Semiconductor Articles from Brightsurf:

Blue phosphorus: How a semiconductor becomes a metal
Blue phosphorus, an atomically thin synthetic semiconductor, becomes metallic as soon as it is converted into a double layer.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Medical robotic hand? Rubbery semiconductor makes it possible
A medical robotic hand could allow doctors to more accurately diagnose and treat people from halfway around the world, but currently available technologies aren't good enough to match the in-person experience.

Laser allows solid-state refrigeration of a semiconductor material
A team from the University of Washington used an infrared laser to cool a solid semiconductor by at least 20 degrees C, or 36 F, below room temperature, as they report in a paper published June 23 in Nature Communications.

Scientists create smallest semiconductor laser
An international team of researchers announced the development of the world's most compact semiconductor laser that works in the visible range at room temperature.

Clemson researcher's novel MOF is potential next-gen semiconductor
Clemson professor Sourav Saha demonstrated a novel double-helical metal organic framework architecture in a partially oxidized form that conducts electricity, potentially making it a next-generation semiconductor.

A gold butterfly can make its own semiconductor skin
A nanoscale gold butterfly provides a more precise route for growing/synthesizing nanosized semiconductors that can be used in nano-lasers and other applications.

Scientists pioneer new generation of semiconductor neutron detector
In a new study, scientists have developed a new type of semiconductor neutron detector that boosts detection rates by reducing the number of steps involved in neutron capture and transduction.

Scientists see defects in potential new semiconductor
A research team has reported seeing, for the first time, atomic scale defects that dictate the properties of a new and powerful semiconductor.

Bending an organic semiconductor can boost electrical flow
Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them and could benefit next-generation electronics such as sensors and solar cells, according to Rutgers-led research.

Read More: Semiconductor News and Semiconductor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.