Nav: Home

With a simple coating, nanowires show a dramatic increase in efficiency and sensitivity

July 06, 2011

Cambridge, Mass. - July 6, 2011 - By applying a coating to individual silicon nanowires, researchers at Harvard and Berkeley have significantly improved the materials' efficiency and sensitivity.

The findings, published in the May 20, 2011, issue of Nano Letters, suggest that the coated wires hold promise for photodetectors and energy harvesting technologies like solar cells.

Due to a large surface-to-volume ratio, nanowires typically suffer from a high surface recombination rate, meaning that photogenerated charges recombine rather than being collected at the terminals. The carrier lifetime of a basic nanowire is shortened by four to five orders of magnitude, reducing the material's efficiency in applications like solar cells to a few percent.

"Nanowires have the potential to offer high energy conversion at low cost, yet their limited efficiency has held them back," says Kenneth Crozier, Associate Professor of Electrical Engineering at the Harvard School of Engineering and Applied Sciences (SEAS).

With their latest work, Crozier and his colleagues demonstrated what could be promising solution. Making fine-precision measurements on single nanowires coated with an amorphous silicon layer, the team showed a dramatic reduction in the surface recombination.

Surface passivation has long been used to promote efficiency in silicon chips. Until now, surface passivation of nanowires has been explored far less.

The creation of the coating that passivated the surfaces of the nanowires was a happy accident. During preparation of a batch of single-crystal silicon nanowires, the scientists conjecture, the small gold particles used to grow the nanowires became depleted. As a result, they think, the amorphous silicon coating was simply deposited onto the individual wires.

Instead of abandoning the batch, Crozier and his team decided to test it. Scanning photocurrent studies indicated, astoundingly, almost a hundred-fold reduction in surface recombination. Overall, the coated wires boasted a 90-fold increase in photosensitivity compared to uncoated ones.

Co-author Yaping Dan, a postdoctoral fellow in Crozier's lab who spearheaded the experiments, suggests that the reason for the increased efficiency is that the coating physically extends the broken atom bonds at the single-crystalline silicon surface. At the same time, the coating also may form a high-electric potential barrier at the interface, which confines the photogenerated charge carriers inside the single-crystalline silicon.

"As far as we know, scientists have not done these types of precision measurements of surface passivation at the level of single nanowires," says Crozier. "Simply by putting a thin layer of amorphous silicon onto a crystalline silicon nanowire reduces the surface recombination nearly two orders of magnitude. We think the work will address some of the disadvantages of nanowires but keep their advantages."

Due to their increased carrier lifetime, the researchers expect that their wires will offer higher energy conversion efficiency when used in solar cell devices.
-end-
Crozier and Dan's co-authors included Kwanyong Seo and Jhim H. Meza, both of SEAS, and Kuniharu Takei and Ali Javey at the University of California at Berkeley. The authors acknowledge the support of Zena Technologies. Fabrication work was carried out at the Center for Nanoscale Systems at Harvard (which is supported by the National Science Foundation).

Harvard University

Related Solar Cells Articles:

Solar cells more efficient thanks to new material standing on edge
Researchers from Lund University in Sweden and from Fudan University in China have successfully designed a new structural organization using the promising solar cell material perovskite.
Printable solar cells just got a little closer
A University of Toronto Engineering innovation could make printing solar cells as easy and inexpensive as printing a newspaper.
A big nano boost for solar cells
Solar cells convert light into electricity. While the sun is one source of light, the burning of natural resources like oil and natural gas can also be harnessed.
Game changer for organic solar cells
Researchers develop a simple processing technique that could cut the cost of organic photovoltaics and wearable electronics.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
Throwing new light on printed organic solar cells
Researchers at the University of Surrey have achieved record power conversion efficiencies for large area organic solar cells.
A new way to image solar cells in 3-D
Berkeley Lab scientists have developed a way to use optical microscopy to map thin-film solar cells in 3-D as they absorb photons.
Toward 'greener,' inexpensive solar cells
Solar panels are proliferating across the globe to help reduce the world's dependency on fossil fuels.
A new technique opens up advanced solar cells
Using a novel spectroscopic technique, EPFL scientists have made a much-needed breakthrough in cutting-edge photovoltaics.
OU physicists developing new systems for next generation solar cells
University of Oklahoma physicists are developing novel technologies with the potential to impact utility-scale energy generation, increase global energy capacity and reduce dependence on fossil fuels by producing a new generation of high efficiency solar cells.

Related Solar Cells Reading:

The Complete Guide About Solar Energy: A Practical Beginners Guide To Solar Panels, Cells and Electricity
by Russel Hobbs (Author)

Discover Right Now How To Harness Solar Energy More Efficiently


SPECIAL OFFER: OVER 50% DISCOUNT
BUY TODAY FOR ONLY $6.99!
(regularly priced at $14.99)


This book has been designed to take you through the numerous stages of gathering your solar panels equipment and how to harness solar radiation by checking different topographical areas or checking your home’s landscape to detect where you can get most sunshine for your solar panels. With the book, you may or may not need the help of professional Solar panel installer, because the... View Details


The Physics of Solar Cells (Properties of Semiconductor Materials)
by Jenny Nelson (Author)

This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.

... View Details


The Physics of Solar Cells: Perovskites, Organics, and Photovoltaic Fundamentals
by Juan Bisquert (Author)

The book provides an explanation of the operation of photovoltaic devices from a broad perspective that embraces a variety of materials concepts, from nanostructured and highly disordered organic materials, to highly efficient devices such as the lead halide perovskite solar cells. The book establishes from the beginning a simple but very rich model of a solar cell, in order to develop and understand step by step the photovoltaic operation according to fundamental physical properties and constraints. It emphasizes the aspects pertaining to the functioning of a solar cell and the... View Details


Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall series in solid state physical electronics)
by Martin A. Green (Author)

Prentice hall series View Details


Physics of Solar Cells: From Basic Principles to Advanced Concepts
by Peter Würfel (Author)

Based on the highly regarded and extremely successful first edition, this thoroughly revised, updated and expanded edition contains the latest knowledge on the mechanisms of solar energy conversion.
The textbook describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency.
Requiring no more than standard physics knowledge, the book enables both students and researchers to understand the factors driving conversion efficiency and to apply this knowledge to their... View Details


Physics of Solar Cells: From Basic Principles to Advanced Concepts (No Longer Used)
by Peter Würfel (Author), Uli Würfel (Author)

The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages.
It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been... View Details


Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)

Learn how to construct and operate the components of a solar hydrogen fuel cell system: the fuel cell stack, the electrolyzer to generate hydrogen fuel, simple hydrogen storage, and solar panels designed specifically to run electrolyzers for hydrogen production. Complete, clear, illustrated instructions to build all the major components make it easy for the non-engineer to understand and work with this important new technology.

Featured are the author's innovative and practical designs for efficient solar powered hydrogen production including:

ESPMs (Electrolyzer Specific... View Details


Solar Cell Array Design Handbook: The Principles and Technology of Photovoltaic Energy Conversion
by Hans S. Rauschenbach (Author)

good View Details


Build Your Own Solar Panel: Generate Electricity from the Sun.
by Phillip Hurley (Author)

Whether you're trying to get off the grid, or you just like to experiment, Build Your Own Solar Panel has all the information you need to build your own photovoltaic panel to generate electricity from the sun. Now available for the first time in print, this revised and expanded edition has easy-to-follow directions, and over 150 detailed photos and illustrations. Lists of materials, tools, and suppliers of PV cells are included. Every-day tools are all that you need to complete these projects.
Build Your Own Solar Panel will show you how to:
Design and build PV panels,
Customize... View Details


Solar Cell Device Physics, Second Edition
by Stephen Fonash (Author)

There has been an enormous infusion of new ideas in the field of solar cells over the last 15 years; discourse on energy transfer has gotten much richer, and nanostructures and nanomaterials have revolutionized the possibilities for new technological developments. However, solar energy cannot become ubiquitous in the world's power markets unless it can become economically competitive with legacy generation methods such as fossil fuels.

The new edition of Dr. Stephen Fonash's definitive text points the way toward greater efficiency and cheaper production by adding coverage of... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Big Five
What are the five biggest global challenges we face right now — and what can we do about them? This hour, TED speakers explore some radical solutions to these enduring problems. Guests include geoengineer Tim Kruger, president of the International Rescue Committee David Miliband, political scientist Ian Bremmer, global data analyst Sarah Menker, and historian Rutger Bregman.
Now Playing: Science for the People

#456 Inside a Conservation NGO
This week we take a close look at conservation NGOS: what they do, how they work, and - most importantly - why we need them. We'll be speaking with Shyla Raghav, the Climate Change Lead at Conservation International, about using strategy and policy to tackle climate change. Then we'll speak with Rebecca Shaw, Lead Scientist at the World Wildlife Fund, about how and why you should get involved with conservation initiatives.