Nav: Home

Pelleting and extrusion increase digestible and metabolizable energy in diets for pigs

July 06, 2016

  • Pelleting, extrusion, and pelleting plus extrusion increased the digestibility of indispensable amino acids.
  • Pelleting of low-fiber diets increases digestible energy by 1.9 percent and metabolizable energy by 2.1 percent.
  • Pelleting of medium-fiber diets increases digestible energy by 1.9 percent and metabolizable by 2.2 percent.
  • Pelleting did not increase digestible energy or metabolizable of high-fiber diets, but extrusion increased digestible energy by 2.0 percent and metabolizable by 2.9 percent
  • Energy utilization may be improved by pelleting, extrusion, or by a combination of the two, but the response seems to be greater for extrusion in diets that are relatively high in fiber.

URBANA, Ill. - Scientists at the University of Illinois using co-products from the ethanol and human food industries are helping shed light on ways processing high-fiber animal feed ingredients can enhance pigs' utilization of the nutrients and energy they contain. The co-products from these industries typically contain more fiber than the standard corn-soybean meal diet.

"It is possible that the benefits of extrusion and pelleting are greater in high-fiber diets than in low-fiber diets. We set out to test that hypothesis," says Hans H. Stein, professor of animal sciences at Illinois."

Stein and his team tested effects of extrusion, pelleting, or extrusion and pelleting: using a low-fiber diet based on corn and soybean meal; a medium-fiber diet containing corn, soybean meal, and 25 percent distillers dried grains with solubles (DDGS); and a high-fiber diet containing corn, soybean meal, 25 percent DDGS, and 20 percent soybean hulls.

Each diet was divided into four batches. One batch was fed in meal form, one was pelleted at 85 degrees C, one was extruded at 115 degrees C, and the fourth was extruded at 115 degrees C and then pelleted at 85 degrees C.

"Regardless of the concentration of fiber in the diet, pelleting, extrusion, and pelleting plus extrusion increased the digestibility of indispensable amino acids relative to feeding in meal form," Stein says. "For most indispensable amino acids, extrusion or extrusion combined with pelleting provided a greater increase than pelleting alone. There was no interaction between processing techniques and fiber level."

Pelleting of low-fiber diets increased digestible energy by 1.9 percent and metabolizable energy by 2.1 percent. Extrusion did not increase digestible energy or metabolizable energy of the low-fiber diet. Combining extrusion with pelleting did not increase digestible energy or metabolizable energy compared with pelleting alone.

For the medium-fiber diets, pelleting increased digestible energy by 1.9 percent and metabolizable by 2.2 percent. Extrusion increased digestible by 2.3 percent and metabolizable energy by 2.7 percent. The combination of pelleting and extrusion did not increase digestible energy or metabolizable energy in these diets.

Pelleting did not increase digestible energy or metabolizable of the high-fiber diets. Extrusion increased digestible energy by 2.0 percent and metabolizable by 2.9 percent. The combination of extrusion and pelleting increased digestible energy by 2.9 percent and metabolizable energy by 3.7 percent.

Hindgut fermentation was not increased in pigs fed extruded, pelleted, or extruded and pelleted diets. Instead, the increase in digestible energy and metabolizable energy appeared to be attributable to increased digestibility of amino acids and starch.

Stein concludes, "These data indicate that energy utilization may be improved by pelleting or extrusion or by a combination of the two, but the response seems to be greater for extrusion in diets that are relatively high in fiber."

The research is supported by funding from the National Pork Board, Des Moines, IA, and by Bu?hler AG, Uzwil, Switzerland.

"Effects of pelleting, extrusion, or extrusion and pelleting on energy and nutrient digestibility in diets containing different levels of fiber and fed to growing pigs," is published in the Journal of Animal Science. Oscar Rojas, formerly of the University of Illinois and now of Devenish Nutrition, and Ester Vinyeta of Bu?hler AG are co-authors.

The full text is available online.
-end-


University of Illinois College of Agricultural, Consumer and Environmental Sciences

Related Amino Acids Articles:

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.
New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.
Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.
To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.
Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.
Differentiating amino acids
Researchers develop the foundation for direct sequencing of individual proteins.
Simulating amino acid starvation may improve dengue vaccines
In a new paper in Science Signaling, researchers at the University of Hyderabad in India and the Cornell University College of Veterinary Medicine show that a plant-based compound called halofuginone improves the immune response to a potential vaccine against dengue virus.
CoP-electrocatalytic reduction of nitroarenes: a controllable way to azoxy-, azo- and amino-aromatic
The development of a green, efficient and highly controllable manner to azoxy-, azo- and amino-aromatics from nitro-reduction is extremely desirable both from academic and industrial points of view.
Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
Researchers develop fast, efficient way to build amino acid chains
Researchers report that they have developed a faster, easier and cheaper method for making new amino acid chains -- the polypeptide building blocks that are used in drug development and industry -- than was previously available.
More Amino Acids News and Amino Acids Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.