Nav: Home

Neural networks to obtain synthetic petroleum

July 06, 2016

Biomass is one of the main sources of energy and heat in the field of renewable energy production: it is any type of non-fossil organic matter, such as living plants, timber, agricultural and livestock waste, wastewater, solid urban organic waste, etc. The three most developed technologies for obtaining energy from biomass are as follows: pyrolysis (decomposition by heating in the absence of oxygen), gasification (reaction with air, oxygen or a blend of both and conversion into gas) and combustion (decomposition through heating with oxygen). The effectiveness and emission levels of these three processes change depending on the composition of the biomass as well as its properties, the experimental conditions and equipment used.

In collaboration with researchers at the University of Sao Carlos in Brazil and within the framework of a European project, members of the UPV/EHU's Catalytic Processes for Waste Valorisation research group analysed the process to set up a refinery to obtain bio-oils or synthetic petroleum using biomass. Since "afterwards, using the bio-oil produced it is possible to obtain the same products that are obtained from petroleum; hydrogen as well as any other compound," explained Martin Olazar, project leader and professor of the Department of Chemical Engineering. The reactor developed and patented by this research group, the conical spouted bed reactor, is highly suited to this process because it is suitable for handling irregular, sticky materials --biomass is a highly irregular material and difficult to handle using conventional technologies--.

Artificial neural networks to determine gross calorific value

In the design of the process to obtain bio-oils using biomass, certain variables need to be determined: the temperature that needs to be achieved, how this temperature is to be achieved, how much fuel (in this case how much biomass) needs to be burnt, etc. The gross calorific value is a key parameter in determining all these data: it is the heat (energy) that is released when a certain quantity of fuel is completely burnt. This parameter is essential in the analysis, design and improvement in biomass pyrolysis, gasification and combustion systems. The correlations existing in the literature give highly variable results depending on each type of biomass and its properties. So the researchers in the group are proposing that artificial neural networks be used to calculate this; they have proven empirically that the system gives very good results and they have reported on them in a paper recently published in the scientific journal Fuel.

Artificial neural networks are computer models based on the way biological neural networks function; the input and output databases are correlated through them. The researchers fed the system with data from the literature and from their own research and saw that highly reliable results were rapidly obtained, compared with the limited correlations existing in the literature. "These neural networks must be continually fed," explained Olazar, "as the results improve when broader case studies are incorporated. Through a simple composition analysis and by incorporating some regular data into the system (such as density and humidity, for example), the neural network provides us with the gross calorific value of the biomass we have available," he explained, "and that way we can more easily launch the calculations needed for our design. This is one of the links in the chain of the process to obtain synthetic petroleum using our technology and it is a hugely useful link," concluded Olazar.
-end-
Additional information

The Catalytic Processes for Waste Valorisation research group of the UPV/EHU's Faculty of Science and Technology reports to the Department of Chemical Engineering and comprises 50 lecturers and researchers. Martin Olazar leads the Design and renewable reactor applications sub-group, has a PhD and is professor of Chemical Engineering.

Bibliographical reference

I. Estiati, F. B. Freire, J. T. Freire, R. Aguado, M. Olazar. "Fitting performance of artificial neural networks and empirical correlations to estimate higher heating values of biomass". Fuel. vol. 180, 15 September 2016, Pages 377-383. doi:10.1016/j.fuel.2016.04.051

University of the Basque Country

Related Biomass Articles:

Upgrading biomass with selective surface-modified catalysts
Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.
A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.
Biomass fuels can significantly mitigate global warming
'Every crop we tested had a very significant mitigation capacity despite being grown on very different soils and under natural climate variability,' says Dr.
Traditional biomass stoves shown to cause lung inflammation
Traditional stoves that burn biomass materials and are not properly ventilated, which are widely used in developing nations where cooking is done indoors, have been shown to significantly increase indoor levels of harmful PM2.5 (miniscule atmospheric particulates) and carbon monoxide (CO) and to stimulate biological processes that cause lung inflammation and may lead to chronic obstructive pulmonary disease (COPD), according to new research published online in the Annals of the American Thoracic Society.
Biotech breakthrough turns waste biomass into high value chemicals
A move towards a more sustainable bio-based economy has been given a new boost by researchers who have been able to simplify a process to transform waste materials into high value chemicals.
How preprocessing methods affect the conversion efficiency of biomass energy production
Research on energy production from biomass usually focuses on the amount of energy generated.
Supercomputing improves biomass fuel conversion
Pretreating plant biomass with THF-water causes lignin globules on the cellulose surface to expand and break away from one another and the cellulose fibers.
Whole-tree harvesting could boost biomass production
Making the shift to renewable energy sources requires biomass, too.
Left out to dry: A more efficient way to harvest algae biomass
Researchers at the University of Tsukuba develop a new system for evaporating the water from algae biomass with reusable nanoporous graphene, which can lead to cheaper, more environmentally friendly biofuels and fine chemicals.
Symbiotic upcycling: Turning 'low value' compounds into biomass
Kentron, a bacterial symbiont of ciliates, turns cellular waste products into biomass.
More Biomass News and Biomass Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.