A biophysical smoking gun

July 06, 2017

While much about Alzheimer's disease remains a mystery, scientists do know that part of the disease's progression involves a normal protein called tau, aggregating to form ropelike inclusions within brain cells that eventually strangle the neurons. Yet how this protein transitions from its soluble liquid state to solid fibers has remained unknown -- until now.

Discovering an unsuspected property of tau, UC Santa Barbara physical chemist Song-I Han and neurobiologist Kenneth S. Kosik have shed new light on the protein's ability to morph from one state to another.

Remarkably, tau can, in a complex with RNA, condense into a highly compact "droplet" while retaining its liquid properties. In a phenomenon called phase separation, tau and RNA hold together, without the benefit of a membrane, but remain separate from the surrounding milieu. This novel state highly concentrates tau and creates a set of conditions in which it becomes vulnerable to aggregation. Kosik and Han outline their discoveries in the journal PLOS Biology.

"Our findings, along with related research in neurodegeneration, posit a biophysical 'smoking gun' on the path to tau pathology," said Kosik, UCSB's Harriman Professor of Neuroscience and co-director of the campus's Neuroscience Research Institute. "The signposts on this path are the intrinsic ability of tau to fold into myriad shapes, to bind to RNA and to form compact reversible structures under physiologic conditions, such as the concentration, the temperature and the salinity."

The researchers found that, depending on the length and shape of the RNA, up to eight tau molecules bind to the RNA to form an extended fluidic assembly. Several other proteins like tau are known to irreversibly aggregate in other neurodegenerative diseases such as amyotrophic lateral sclerosis, more commonly known as Lou Gehrig's disease.

"There is an interesting relationship between intrinsically disordered proteins that are predisposed to become neurodegenerative -- in this case tau -- and this phase separation state," said Han, a professor in UCSB's Department of Chemistry and Biochemistry. "Is this droplet stage a reservoir that protects tau or an intermediate stage that helps transform tau into a disease state with fibrils or both at the same time? Figuring out the exact physiological role of these droplets is the next challenge."

Subsequent analysis will consist of an intensive search for the counterpart of tau droplets in living cells. In future work, the researchers also want to explore how and why a cell regulates the formation and dissolution of these droplets and whether this represents a potential inroad toward therapy.
-end-


University of California - Santa Barbara

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.